Assessment of two CRISPR-Cas9 genome editing protocols for rapid generation of Trypanosoma cruzi gene knockout mutants.

Int J Parasitol

Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. Electronic address:

Published: July 2018

CRISPR/Cas9 technology has been used to edit genomes in a variety of organisms. Using the GP72 gene as a target sequence, we tested two distinct approaches to generate Trypanosoma cruzi knockout mutants using the Cas9 nuclease and in vitro transcribed single guide RNA. Highly efficient rates of disruption of GP72 were achieved either by transfecting parasites stably expressing Streptococcus pyogenes Cas9 with single guide RNA or by transfecting wild type parasites with recombinant Staphylococcus aureus Cas9 previously associated with single guide RNA. In both protocols, we used single-stranded oligonucleotides as a repair template for homologous recombination and insertion of stop codons in the target gene.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpara.2018.02.002DOI Listing

Publication Analysis

Top Keywords

single guide
12
guide rna
12
trypanosoma cruzi
8
knockout mutants
8
assessment crispr-cas9
4
crispr-cas9 genome
4
genome editing
4
editing protocols
4
protocols rapid
4
rapid generation
4

Similar Publications

Background: Intraoperative hip capsule management is increasingly recognized as an important component of hip arthroscopy for the prevention of capsular-related instability. The periportal capsulotomy, relative to the interportal capsulotomy, has been proposed as a minimally invasive technique for decreasing postarthroscopy hip instability; however, the biomechanical effects of this technique are not well established.

Purpose/hypothesis: This study aimed to provide a biomechanical characterization of interportal and periportal capsulotomies, helping inform surgeon choice of capsulotomy type and repair, potentially guiding clinical practice in hip arthroscopy.

View Article and Find Full Text PDF

A Compendium of Magnetic Nanoparticle Essentials: A Comprehensive Guide for Beginners and Experts.

Pharmaceutics

January 2025

Physics Department and i3N, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.

Magnetic nanoparticles (MNPs) are advanced materials that combine the unique properties of magnetic materials and nanoscale dimensions, enabling a wide range of applications in biomedicine, environmental science, and information technology. This review provides a comprehensive yet accessible introduction to the fundamental principles, characterization techniques, and diverse applications of MNPs, with a focus on their nanoscale magnetic properties, such as superparamagnetism, single-domain behavior, and surface effects. It also delves into their classification and the critical role of parameters like magnetic anisotropy and blocking temperature.

View Article and Find Full Text PDF

Recent developments in single-cell multi-omics technologies have provided the ability to identify diverse cell types and decipher key components of the tumor microenvironment (TME), leading to important advancements toward a much deeper understanding of how tumor microenvironment heterogeneity contributes to cancer progression and therapeutic resistance. These technologies are able to integrate data from molecular genomic, transcriptomic, proteomics, and metabolomics studies of cells at a single-cell resolution scale that give rise to the full cellular and molecular complexity in the TME. Understanding the complex and sometimes reciprocal relationships among cancer cells, CAFs, immune cells, and ECs has led to novel insights into their immense heterogeneity in functions, which can have important consequences on tumor behavior.

View Article and Find Full Text PDF

Mitochondrial DNA Structure in .

Pathogens

January 2025

Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.

Kinetoplastids display a single, large mitochondrion per cell, with their mitochondrial DNA referred to as the kinetoplast. This kinetoplast is a network of concatenated circular molecules comprising a maxicircle (20-64 kb) and up to thousands of minicircles varying in size depending on the species (0.5-10 kb).

View Article and Find Full Text PDF

Unleashing the Potential of Pre-Trained Diffusion Models for Generalizable Person Re-Identification.

Sensors (Basel)

January 2025

College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China.

Domain-generalizable re-identification (DG Re-ID) aims to train a model on one or more source domains and evaluate its performance on unseen target domains, a task that has attracted growing attention due to its practical relevance. While numerous methods have been proposed, most rely on discriminative or contrastive learning frameworks to learn generalizable feature representations. However, these approaches often fail to mitigate shortcut learning, leading to suboptimal performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!