Unlabelled: The objective of this study was to explore the association of sperm mitochondrial ND2 (MT-ND2) gene variants with total fertilization failure (TFF). A retrospective comparative study of 246 cases of fresh in vitro fertilization (IVF) cycles or half-intracytoplasmic sperm injection cycles in the Han Chinese population was performed from July 2011 to May 2017. A total of 59 cases undergoing TFF, and 187 control cases with normal fertilization (fertilization rates >50%) were included. The sperm mitochondrial genovariation was determined using nested sequencing. A total of 32 homoplasmic variants and 47 heteroplasmic variants of MT-ND2 gene were observed in this study. There were no significant differences in the frequencies of the 32 homoplasmic variants of MT-ND2 gene between the TFF and control groups. A total of 53 pair-wise comparisons were performed, and the general characteristics of the IVF failure and control subjects were adjusted in logistic models. Data suggested that there were no significant differences in the frequencies of point 4914, 5320, and 5426 heteroplasmic variants of MT-ND2 gene between the TFF and control groups. In addition, no significant difference was observed in the frequency of mtDNA haplogroup D or haplogroup G between the IVF failure group and the normal fertilization group. This study suggests that the MT-ND2 gene variants might not be associated with TFF.
Abbreviations: ATP: adenosine triphosphate; dNTP: deoxy-ribonucleoside triphosphate; FADH2: flavin adenine dinucleotide; FDR: false discovery rate; FSH: follicle-stimulating hormone; IVF: in vitro fertilization; LH: luteinizing hormone; MTATP6: mitochondrially encoded ATP synthase 6; MTCYB: mitochondrially encoded cytochrome b; mtDNA: mitochondrial DNA; MT-ND2: mitochondrial ND2; NADH: nicotinamide adenine dinucleotide; ND2: NADH dehydrogenase subunit 2; OXPHOS: oxidative phosphorylation; PCR: single nucleotide polymorphisms; SNPs: single nucleotide polymorphisms; TFF: total fertilization failure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/19396368.2018.1447616 | DOI Listing |
Discov Oncol
January 2025
Department of Urology, Beijing TianTan Hospital, Capital Medical University, No. 119 South 4 Ring West Road, Fengtai District, 100070, Beijing, China.
Background: Although pentatricopeptide repeat domain 1 (PTCD1) has been found to modulate mitochondrial metabolic and oxidative phosphorylation, its contribution in the growth of clear cell renal cell carcinoma (ccRCC) remains unknown.
Methods: The Cancer Genome Atlas (TCGA) dataset was utilized to examine the transcriptional alterations, patient characteristics, clinical outcomes, as well as pathway activation of PTCD1. The Weighted Gene Co-expression Network Analysis (WGCNA) was performed to investigate potential genes that associated with PTCD1.
PLoS One
December 2024
Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America.
Here, we describe a spontaneous mouse mutant with a deletion in a predicted gene 2310061I04Rik (Rik) of unknown function located on chromosome 17. A 59 base pair long deletion occurred in the first intron of the Rik gene and disrupted its expression. Riknull mice were born healthy and appeared anatomically normal up to two weeks of age.
View Article and Find Full Text PDFClin Investig Arterioscler
October 2024
Facultad de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, España; CIBER de Enfermedades Cardiovasculares, CIBERCV, Instituto Carlos III (ISCIII), Madrid, España. Electronic address:
Background: Ascending Thoracic Aortic Aneurysm (ATAA) is a progressive dilation of the aorta that can be complicated by its dissection leading to death in 80-90% of the patients. When associated with aging and atherosclerosis, the outcome is worse and reconstructive surgery is the only effective therapy. Our objective was to characterize differential expressed genes (DEG) involved in endoplasmic reticulum (ER) and mitochondria dysfunction in patients with degenerative ATAA.
View Article and Find Full Text PDFMol Neurobiol
September 2024
Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China.
"Brain fog," a persistent cognitive impairment syndrome, stands out as a significant neurological aftermath of coronavirus disease 2019 (COVID-19). Yet, the underlying mechanisms by which COVID-19 induces cognitive deficits remain elusive. In our study, we observed an upregulation in the expression of genes linked to the inflammatory response and oxidative stress, whereas genes associated with cognitive function were downregulated in the brains of patients infected with COVID-19.
View Article and Find Full Text PDFNeural Regen Res
November 2025
Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
JOURNAL/nrgr/04.03/01300535-202511000-00032/figure1/v/2024-12-20T164640Z/r/image-tiff Glial cells play crucial roles in regulating physiological and pathological functions, including sensation, the response to infection and acute injury, and chronic neurodegenerative disorders. Glial cells include astrocytes, microglia, and oligodendrocytes in the central nervous system, and satellite glial cells and Schwann cells in the peripheral nervous system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!