The prospective design of nanocarriers for personalized oncotherapy should be an ensemble of targeting, imaging, and noninvasive therapeutic capabilities. Herein, we report the development of the inverse hexagonal nano-liquid crystalline (NLC) particles that are able to host formononetin (FMN), a phytoestrogen with known anticancer activity, and tetraphenylethene (TPE), an iconic optical beacon with aggregation-induced emission (AIE) signature, simultaneously. Ordered three-dimensional mesoporous internal structure and high-lipid-volume fraction of NLC nanoparticles (NLC NPs) frame the outer compartment for the better settlement of payloads. Embellishment of these nanoparticles by anisamide (AA), a novel sigma receptor targeting ligand using carbodiimide coupling chemistry ensured NLC's as an outstanding vehicle for possible utility in surveillance of tumor location as well as the FMN delivery through active AIE imaging. The size and structural integrity of nanoparticles were evaluated by quasi-elastic light scattering, cryo field emission scanning electron microscopy small-angle X-ray scattering. The existence of AIE effect in the nanoparticles was evidenced through the photophysical studies that advocate the application of NLC NPs in fluorescence-based bioimaging. Moreover, confocal microscopy illustrated the single living cell imaging ability endowed by the NLC NPs. In vitro and in vivo studies supported the enhanced efficacy of targeted nanoparticles (AA-NLC-TF) in comparison to nontargeted nanoparticles (NLC-TF) and free drug. Apparently, this critically designed multimodal NLC NPs may establish a promising platform for targeted and image-guided chemotherapy for breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b19109DOI Listing

Publication Analysis

Top Keywords

nlc nps
16
nano-liquid crystalline
8
optical beacon
8
nlc
6
nanoparticles
6
anisamide-anchored lyotropic
4
lyotropic nano-liquid
4
crystalline particles
4
aie
4
particles aie
4

Similar Publications

: The key components of the blood-brain barrier (BBB) are endothelial cells, pericytes, astrocytes, and the capillary basement membrane. The BBB serves as the main barrier for drug delivery to the brain and is the most restrictive endothelial barrier in the body. Nearly all large therapeutic molecules and over 90% of small-molecule drugs cannot cross the BBB.

View Article and Find Full Text PDF

Mosquito-borne diseases represent a growing health challenge over time. Nanostructured lipid carriers (NLCs) are the second generation of solid lipid nanoparticles (SLNs), and they continue to attract significant interest as potential diagnostic and therapeutic tools in disease inhibition and insect control. Activated ingredients presented in the Poinciana leaves were extracted and GC-MS data indicated an increased abundance of terpenes, flavonoids, and phenolic substances.

View Article and Find Full Text PDF

Introduction: Nanoparticles (NPs) are widely used in the pharmaceutical field to treat various human disorders. Among these, lipid-based NPs (LNPs), including solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), are favored for drug/bioactive delivery due to their high stability, biocompatibility, encapsulation efficiency, and sustained/controlled release. These properties make them particularly suitable as carriers of compounds derived from plant sources.

View Article and Find Full Text PDF

Criticality Controlling Mechanisms in Nematic Liquid Crystals.

Nanomaterials (Basel)

February 2024

Condensed Matter Physics Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.

We theoretically study the generic mechanisms that could establish critical behavior in nematic liquid crystals (NLCs). The corresponding free energy density terms should exhibit linear coupling with the nematic order parameter and, via this coupling, enhance the nematic order. We consider both temperature- and pressure-driven, order-disorder phase transitions.

View Article and Find Full Text PDF

In this study, we synthesized silver nanoparticle-loaded cashew nut shell activated carbon (Ag/CNSAC). The synthesized samples were characterized by XRD, XPS, SEM with EDS, FT-IR, and BET analysis. The XRD, XPS, and EDS data provided convincing proof that Ag loaded on CNSAC is formed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!