Vizantin is an insoluble adjuvant that activates macrophages and lymphocytes. Recently, 2,2',3,3',4,4'-hexasulfated-vizantin (sulfated vizantin), which enables solubilization of vizantin, was developed by the present team. Sulfated vizantin was found to enhance bactericidal activity against multi-drug resistant Pseudomonas aeruginosa in RAW264.7 cells. In addition, spread of P. aeruginosa was inhibited in RAW264.7 cells treated with sulfated vizantin. When only sulfated vizantin and P. aeruginosa were incubated, sulfated vizantin did not affect growth of P. aeruginosa. Formation of DNA-based extracellular traps (ETs), a novel defense mechanism in several types of innate immune cells, helps to eliminate pathogens. In the present study, ET-forming macrophages constituted the majority of immune cells. Sulfated vizantin induced ET formation in RAW264.7 cells, whereas a Ca-chelating reagent, EDTA, and T-type calcium channel blocker, tetrandrine, inhibited ET formation and attenuated inhibition of spread of P. aeruginosa in sulfated vizantin-treated cells. Thus, sulfated vizantin induces ET formation in phagocytic cells in a Ca-dependent manner, thus preventing spread of P. aeruginosa. Hence, sulfated vizantin may be useful in the management of infectious diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1348-0421.12589 | DOI Listing |
Chem Pharm Bull (Tokyo)
March 2024
Faculty of Pharmaceutical Science, Tokushima Bunri University.
Vizantin, 6,6'-bis-O-(3-nonyldodecanoyl)-α,α'-trehalose, has been developed as a safe immunostimulator on the basis of a structure-activity relationship study with trehalose 6,6'-dicorynomycolate. Our recent study indicated that vizantin acts as an effective Toll-like receptor-4 (TLR4) partial agonist to reduce the lethality of an immune shock caused by lipopolysaccharide (LPS). However, because vizantin has low solubility in water, the aqueous solution used in in vivo assay systems settles out in tens of minutes.
View Article and Find Full Text PDFBMC Microbiol
November 2020
Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan.
Background: Sulfated vizantin, a recently developed immunostimulant, has also been found to exert antibiofilm properties. It acts not as a bactericide, but as a detachment-promoting agent by reducing the biofilm structural stability. This study aimed to investigate the mechanism underlying this activity and its species specificity using two distinct ex vivo oral biofilm models derived from human saliva.
View Article and Find Full Text PDFMicrobiol Immunol
July 2020
Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
Streptococcus mutans is the main pathogen of dental caries and adheres to the tooth surface via soluble and insoluble glucans produced by the bacterial glucosyltransferase enzyme. Thus, the S. mutans glucosyltransferase is an important virulence factor for this cariogenic bacterium.
View Article and Find Full Text PDFPLoS One
April 2019
Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto, Japan.
Pseudomonas aeruginosa is an opportunistic pathogen that causes severe infections, such as pneumonia and bacteremia. Several studies demonstrated that flagellar motility is an important virulence factor for P. aeruginosa infection.
View Article and Find Full Text PDFMicrobiol Immunol
May 2018
Division of Microbiology and Infectious Diseases, Graduate School ot Medical and Dental Sciences, Niigata University, 2-5274, Gakkocho-dori, Chuo-ku, Niigara, 95 l-8514, Japan.
Vizantin is an insoluble adjuvant that activates macrophages and lymphocytes. Recently, 2,2',3,3',4,4'-hexasulfated-vizantin (sulfated vizantin), which enables solubilization of vizantin, was developed by the present team. Sulfated vizantin was found to enhance bactericidal activity against multi-drug resistant Pseudomonas aeruginosa in RAW264.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!