X-ray diffraction measurement at the SPring-8 synchrotron was employed to investigate the structures of two types of imidazolium-based ionic liquids (ILs), 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTF2]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4]), confined between silica surfaces by varying the surface separation distances of ca. 500 nm (bulk liquid), ca. 10 nm, and ca. 2 nm (hard wall thickness). The obtained diffraction profiles and intensities were discussed by considering the structures and properties of the nano-confined ILs between the silica surfaces investigated by resonance shear measurement (RSM) and molecular dynamics simulation (MD) in our previous reports. [C4mim][NTf2] showed two diffraction peaks at q = 8.8 nm-1 (spacing d = 0.71 nm) and at q = 14.0 nm-1 (spacing d = 0.45 nm) at the greatest distance (D = ca. 500 nm), which were assigned to the interval between the same ions (anion-anion or cation-cation) within the polar network of [C4mim][NTf2] and the interval between the neighboring anion-cation, respectively. The positions of these two peaks remained the same at D = ca. 10 nm and at the hard wall (D = ca. 2 nm) and their intensity factor increased, indicating that both the cation and anion existed in the same layer. This result was consistent with the checkerboard structure of [C4mim][NTf2] on the silica surface computer simulated in our previous studies. On the other hand, [C4mim][BF4] showed a peak at q = 15.4 nm-1 (spacing d = 0.41 nm) corresponding to the anion-cation interval at the greatest distance (D = ca. 500 nm). This peak became broader and weaker at D = ca. 12 nm and at D = ca. 2 nm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cp08611c | DOI Listing |
Biophys Chem
January 2025
Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia; School of Mathematics and Physics, University of Surrey, Guildford GU2 7XH, UK.
Amyloid diseases are characterized by the accumulation of misfolded protein aggregates in human tissues, pose significant challenges for both diagnosis and treatment. Protein aggregations known as amyloids are linked to several neurodegenerative conditions including Alzheimer's disease, Parkinson's disease, and systemic amyloidosis. The key goal of this research is to employ Small-Angle X-ray Scattering (SAXS) to examine the supramolecular structures of amyloid aggregates in human tissues.
View Article and Find Full Text PDFPolymers (Basel)
October 2024
National Enginneering Research Center for Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing 100081, China.
In order to mitigate the release of toxic phosphine from aluminum hypophosphite in twin-screw processing, montmorillonite-melamine cyanurate was prepared by three methods: (1) mechanical intercalation, (2) water intercalation and (3) in situ intercalation. The sheet spacing of montmorillonite was increased from 1.140 nm to 1.
View Article and Find Full Text PDFNanoscale
November 2023
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, Germany.
The co-packaging of optics and electronics provides a potential path forward to achieving beyond 50 Tbps top of rack switch packages. In a co-packaged design, the scaling of bandwidth, cost, and energy is governed by the number of optical transceivers (TxRx) per package as opposed to transistor shrink. Due to the large footprint of optical components relative to their electronic counterparts, the vertical stacking of optical TxRx chips in a co-packaged optics design will become a necessity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2022
State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, West Campus, 2 Linggong Rd., Dalian116024, China.
Intelligent interactive electronic devices can dynamically respond to and visualize various stimuli, promoting the rapid development of flexible electronics. In this paper, an alternating single- and dual-network design strategy was developed for ingeniously constructing an interactive electronic fiber sensor with heterogeneous structural color (HSCEF sensor). The resulting sensor can rapidly output the synchronous electrical and optical dual signals under strain by adjusting the transport distance of conductive ions and the lattice spacing of the photonic crystal (∼200 ms).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!