CD86 molecule is the ligand for both costimulatory (CD28) and coinhibitory (CTLA-4) molecules, and it regulates immune response after allogeneic hematopoietic stem cell transplantation (alloHSCT). Therefore, we postulate that gene variations might influence the outcome after alloHSCT. Altogether, 295 adult patients (pts) undergoing related (105 pts) and unrelated (190 pts) donor-matched HSCT were genotyped for the following gene polymorphisms: rs1129055, rs9831894, and rs2715267. Moreover, the donors' rs1129055 polymorphism was determined. None of the investigated SNPs alone were associated with aGvHD and rate of relapse. However, we showed that rs2715267 SNP influenced overall survival (OS) after alloHSCT. The 24-month OS for the rs271526GG recipients was worse than that for the recipients possessing T allelle (TT or GT genotypes) ( = 0.009). Moreover, analysis of gene-gene interaction between and showed that having both the A allele for rs1129055 and the CT60GG genotype in recipients increased the risk of aGvHD about 3.5 times. Interestingly, the donors' rs1129055GG genotype and the recipients' CT60GG genotype also increased the risk of aGvHD about 2.7-fold. We postulate that recipients' gene polymorphisms influence the overall survival after alloHSCT and, together with polymorphisms, might be considered a risk factor for aGvHD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821961PMC
http://dx.doi.org/10.1155/2018/3826989DOI Listing

Publication Analysis

Top Keywords

allogeneic hematopoietic
8
hematopoietic stem
8
stem cell
8
cell transplantation
8
gene polymorphisms
8
survival allohsct
8
ct60gg genotype
8
increased risk
8
risk agvhd
8
influence genetic
4

Similar Publications

Primary or secondary hypogammaglobulinemia is associated with persistent norovirus and infections despite immunoglobulin replacement therapy. Allogeneic hematopoietic cell transplantation for hematologic indications can lead to immune reconstitution by correcting a previously undiagnosed concurrent primary immunodeficiency.

View Article and Find Full Text PDF

Background: Despite decades of post-allogeneic hematopoietic cell transplantation (HCT) growth factor utilization, its role remains undefined, leading to ongoing debates and research. The theoretical impacts of growth factors have been challenged in numerous studies.

Methods: In this retrospective cohort study conducted at the Princess Margaret Cancer Centre, we analyzed the clinical outcomes of 509 patients who underwent allogeneic HCT between May 1, 2019, and May 31, 2022.

View Article and Find Full Text PDF

Whether the fat-soluble vitamins A, D, E, and K are associated with development of graft-versus-host disease (GvHD) after allogeneic stem cell transplantation, is unclear. We assessed if the levels of these vitamins were associated with development of GvHD during the first year after transplantation using data from a two-armed randomized nutritional intervention trial. Changes in plasma levels during 1-year follow-up were analyzed using a linear mixed model for repeated measurements.

View Article and Find Full Text PDF

Unlabelled: Minimal residual disease (MRD) is the most important prognostic factor for B-cell acute lymphoblastic leukemia (B-ALL) however nearly 20-30% of patients relapsed even when they achieved negative MRD, how to identify these patients is less addressed. In this study, we aimed to reassess the prognostic significance of MRD and IKZF1 in adult B-ALL patients receiving pediatric chemotherapy regimens. In the PDT-ALL-2016 cohort (NCT03564470), adult B-ALL patients were treated with a pediatric-inspired regimen; patients were redefined as standard (MRD-negative and IKZF1wild-type), intermediate (MRD-positive or IKZF1 deletion), and high-risk (MRD-positive and IKZF1 deletion) groups by combining IKZF1 deletion status and MRD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!