Emerging biomimetic tissue engineering strategies aim to partially recapitulate fundamental events that transpire during embryonic skeletal development; namely, cellular self-organization and targeted morphogenetic pathway activation. Here, we describe self-assembled, scaffold-free human mesenchymal stem cell (hMSC) rings featuring microparticle-mediated presentation of transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2). We tested the hypothesis that spatiotemporally-controlled dual presentation of TGF-β1 and BMP-2 is superior in modulating endochondral ossification of high-density cellular constructs compared to single morphogen delivery. hMSC rings were engineered by seeding cells with microparticles presenting (1) TGF-β1, (2) BMP-2, or (3) TGF-β1 + BMP-2 in custom agarose wells to facilitate self-assembly within 2 d, followed by horizontal culture on glass tubes for 5 weeks. At day 2, hMSC rings across groups revealed homogenous cellular organization mimetic of early mesenchymal condensation with no evidence of new matrix or mineral deposition. Significant early chondrogenic and osteogenic priming occurred with TGF-β1 + BMP-2 presentation compared to single morphogen-loaded groups. By week 5, TGF-β1-loaded hMSC rings had undergone chondrogenesis, while presentation of BMP-2 alone or in conjunction with TGF-β1 stimulated chondrogenesis, chondrocyte hypertrophy, and osteogenesis indicative of endochondral ossification. Importantly, tissue mineralization was most compelling with TGF-β1 + BMP-2 loading. Lastly, hMSC ring 'building blocks' were shown to efficiently fuse into tubes within 6 d post self-assembly. The resulting tubular tissue units exhibited structural integrity, highlighting the translational potential of this advanced biomimetic technology for potential early implantation in long bone defects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5865267PMC
http://dx.doi.org/10.7150/ntno.23354DOI Listing

Publication Analysis

Top Keywords

tgf-β1 bmp-2
20
hmsc rings
16
human mesenchymal
8
mesenchymal stem
8
stem cell
8
endochondral ossification
8
compared single
8
tgf-β1
7
bmp-2
7
rings
5

Similar Publications

Bacterial nanocellulose (BNC) has attracted considerable attention in the field of biomedical engineering due to its potential for use in bone regeneration applications. The present study investigates the in vitro and in vivo efficacy of bacterial nanocellulose (BNC) combined with calcium and cerium ions (BNC-Ce:CaP) in bone regeneration applications. XRD analysis confirmed the presence of monetite and hydroxyapatite phases in BNC-CaP, while BNC-Ce:CaP revealed an additional brushite phase.

View Article and Find Full Text PDF

Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification (HO). Understanding accessory factors modulating BMP signaling would provide both a means of enhancing BMP-dependent regeneration while preventing HO. This study focuses on the ability of the collagen receptor, discoidin domain receptor 2 (DDR2), to regulate BMP activity.

View Article and Find Full Text PDF

Background: Congenital Pseudarthrosis of the Tibia (CPT) is a rare pediatric condition presenting substantial challenges for orthopedic surgeons. Aiming to achieve bone union, with subsequent complications such as refractures being common. The aim of the present study is to evaluate the results of our intentional cross-union protocol and to compare these outcomes with those obtained from our previously used techniques.

View Article and Find Full Text PDF

A self-forming bone membrane generated by periosteum-derived stem cell spheroids enhances the repair of bone defects.

Acta Biomater

December 2024

Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510000, PR China. Electronic address:

The periosteum, a highly specialized thin tissue, is instrumental in contributing to as much as 70% of early bone formation. Recognizing the periosteum's vital physiological roles, the fabrication of a biomimetic periosteum has risen as an auspicious strategy for addressing extensive bone defects. In the study, we obtained such biomimetic periosteum by utilizing periosteum-derived stem cells (PDSCs) spheroids.

View Article and Find Full Text PDF

Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.

Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!