Background: Mineral trioxide aggregate (MTA) has a high biocompatibility and its physical properties could be improved by adding the containing silica fume an amorphous silicon dioxide (condensed silica fume [CSF]). The aim of this study was to evaluate the cytotoxicity of MTA mixed with CSF on the viability of L929 mouse fibroblast cell using 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide reduction assay (MTT assay).
Materials And Methods: In this study white MTA was mixed with distilled water according to the manufacturer's instructions. Mixtures of White MTA with 10%, 15%, and 20% CSF by weight were prepared and mixed with distilled water. Cytotoxicity of mixtures was compared with MTT assay on L929 mouse fibroblast cell line after 24, 48, and 72 h. Differences in cytotoxicity were assessed by one-way analysis of variance (ANOVA).
Results: Mean ± SD of vital cell counts cultured in MTA, MTA + 10% CSF, MTA + 15% CSF, and MTA + 20% CSF were 98% ± 6%, 97% ± 6%, 94% ± 4%, and 98% ± 4%, respectively. One-way ANOVA did not reveal any statistically significant difference between the groups ( > 0.05).
Conclusion: It may be concluded that addition of CSF to MTA may not influence its cytotoxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5858074 | PMC |
Sci Rep
January 2025
Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
In the manufacturing of some sectors, such as marble and brick, certain byproducts, such as sludge, powder, and pieces containing valuable chemical compounds, emerge. Some concrete plants utilize these byproducts as mineralogical additives in Turkey. The objective of the experimental study is to ascertain whether the incorporation of waste from the marble and brick industries, in powder form, into cement manufacturing as a mineralogical additive or substitute is a viable option.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China.
The incorporation of desert sand-mineral admixture improves the abrasion resistance of concrete. To prolong the service life of assembled concrete channels and mitigate the depletion of river sand resources, the effects of fly ash (FA), silica fume (SF), desert sand (DS), and basalt fiber (BF) on the mechanical properties and the abrasion resistance of concrete were examined, alongside an analysis of their microstructures to elucidate the underlying mechanisms of influence. The results indicated that the abrasion resistance strength of concrete mixed with 10% FA and 0.
View Article and Find Full Text PDFSci Rep
January 2025
College of Civil Engineering, Guizhou University, Guiyang, 550025, Guizhou, China.
The large stockpile and low utilization rate of red mud (RM) have caused an urgent need for large quantities of RM to be eliminated. In this study, multi-solid-waste synergistic RM-based composite cementitious materials (MS-RMCM) were prepared using RM as the primary material, combined with fly ash, silica fume, and quicklime. Orthogonal tests were conducted to investigate the effects of cementitious components on the mechanical properties.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Civil, Environmental, and Architectural Engineering, Worcester Polytechnic Institute, Worcester, USA.
Sisal fiber moisture sensitivity and degradation are treated by alkaline and pozzolanic methods, such as silica fume and kaolin surface coating. However, it is novel that the treatment of sisal fiber by calcined bentonite slurry can coat sisal fiber from moisture and protect it from cement hydration by consuming free lime and reducing cement matrix alkalinity. Therefore, the present study treated sisal fibers with calcined bentonite slurry and investigated the effect of using different lengths and doses of treated and raw sisal fibers in a mortar.
View Article and Find Full Text PDFSci Rep
January 2025
Spectroscopy Department, National Research Centre, El Buhouth St., Dokki, Giza, 12622, Egypt.
Due to the high cost of raw materials, this work aims to benefit from metal waste, especially iron (Fe) and silicon bronze, which results from turning workshops and recycling them to obtain nanocomposites for industrial applications. In this respect, Fe/SiBr/SiN/silica fume nanocomposites possessing superior mechanical, wear, and magnetic characteristics have been produced using powder metallurgy (PM) technology. Milled sample particle size, crystal size, and phase composition were investigated using X-ray diffraction (XRD) technique and transmission electron microscopy (TEM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!