Due to its moldability, biocompatibility, osteoconductivity and resorbability, calcium phosphate cement (CPC) is a highly promising scaffold material for orthopedic applications. However, pH changes and ionic activity during the CPC setting reaction may adversely affect cells seeded directly on CPC. Moreover, a lack of macropores in CPC limits ingrowth of new bone. The objectives of this study were to prepare macroporous CPC scaffolds via porogen leaching, using mannitol crystals as the porogen and to evaluate the in vitro proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) encapsulated in chitosan/β-glycerophosphate (C/GP) hydrogel prior to exposure to the novel CPC scaffold. MSCs were found to be adhered to the surfaces of CPC macropores via scanning electron microscopy. The viability and osteogenic differentiation of MSCs in C/GP hydrogel with or without exposure to CPC constructs containing mannitol crystals indicated that coating with C/GP hydrogel protected the cells during cement mixing and setting. In conclusion, novel, macroporous CPC scaffolds were prepared, and our data indicate that a hydrogel encapsulation-based strategy can be used to protect cells during scaffold formation. Thus, the MSC-laden CPC scaffolds show promise for the delivery of stem cells to promote bone regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.medengphy.2018.03.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!