Structure-Function Relationship of the Bik1-Bim1 Complex.

Structure

Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland; University of Basel, Biozentrum, 4056 Basel, Switzerland. Electronic address:

Published: April 2018

In budding yeast, the microtubule plus-end tracking proteins Bik1 (CLIP-170) and Bim1 (EB1) form a complex that interacts with partners involved in spindle positioning, including Stu2 and Kar9. Here, we show that the CAP-Gly and coiled-coil domains of Bik1 interact with the C-terminal ETF peptide of Bim1 and the C-terminal tail region of Stu2, respectively. The crystal structures of the CAP-Gly domain of Bik1 (Bik1CG) alone and in complex with an ETF peptide revealed unique, functionally relevant CAP-Gly elements, establishing Bik1CG as a specific C-terminal phenylalanine recognition domain. Unlike the mammalian CLIP-170-EB1 complex, Bik1-Bim1 forms ternary complexes with the EB1-binding motifs SxIP and LxxPTPh, which are present in diverse proteins, including Kar9. Perturbation of the Bik1-Bim1 interaction in vivo affected Bik1 localization and astral microtubule length. Our results provide insight into the role of the Bik1-Bim1 interaction for cell division, and demonstrate that the CLIP-170-EB1 module is evolutionarily flexible.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.str.2018.03.003DOI Listing

Publication Analysis

Top Keywords

etf peptide
8
bik1-bim1 interaction
8
structure-function relationship
4
bik1-bim1
4
relationship bik1-bim1
4
complex
4
bik1-bim1 complex
4
complex budding
4
budding yeast
4
yeast microtubule
4

Similar Publications

Development of Etf-3-specific nanobodies to prevent Ehrlichia infection and LNP-mRNA delivery in cellular and murine models.

Microbiol Res

March 2025

Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, United States. Electronic address:

Ehrlichia chaffeensis is an obligatory intracellular bacterium that infects monocytes and macrophages and causes human monocytic ehrlichiosis. Ehrlichia translocated factor-3 (Etf-3) is a type IV secretion system effector that binds host-cell ferritin light chain and induces ferritinophagy, thus increasing cellular labile iron pool for Ehrlichia proliferation. To further characterize roles of Etf-3 in Ehrlichia infection, we produced immune libraries of Etf-3-specific nanobodies (Nbs).

View Article and Find Full Text PDF

The tryptophan zipper (Trpzip) is an iconic folding motif of β-hairpin peptides capitalizing on two pairs of cross-strand tryptophans, each stabilized by an aromatic-aromatic stacking in an edge-to-face (EF) geometry. Yet, the origins and the contribution of this EF packing to the unique Trpzip stability remain poorly understood. To address this question of structure-stability relationship, a library of Trpzip hairpins was developed by incorporating readily accessible nonproteinogenic tryptophans of varying electron densities.

View Article and Find Full Text PDF

Although PSMA PET/CT imaging has great potential for noninvasively detecting prostate cancer (PCa), limitations exist for patients with low PSMA expression, caused by androgen deprivation treatment or neuroendocrine differentiation. Analysis of The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) data found that erythropoietin-producing hepatocellular receptor A2 (EphA2), a receptor overexpressed in most PCa could be a potential target for PSMA-negative PCa. A fluorescent ligand ETF and a radiolabeled ligand [F]AlF-ETN derived from a EphA2-targeting bicyclic peptide were synthesized and investigated.

View Article and Find Full Text PDF

Cryptochromes are proteins that are highly conserved across species and in many instances bind the flavin adenine dinucleotide (FAD) cofactor within their photolyase-homology region (PHR) domain. The FAD cofactor has multiple redox states that help catalyze reactions, and absorbs photons at about 450 nm, a feature linked to the light-related functions of cryptochrome proteins. Reactive oxygen species (ROS) are produced from redox reactions involving molecular oxygen and are involved in a myriad of biological processes.

View Article and Find Full Text PDF

Unlabelled: Maternal consumption of a Western-style diet (mWD) during pregnancy alters fatty acid metabolism and reduces insulin sensitivity in fetal skeletal muscle. The long-term impact of these fetal adaptations and the pathways underlying disordered lipid metabolism are incompletely understood. Therefore, we tested whether a mWD chronically fed to lean, insulin-sensitive adult Japanese macaques throughout pregnancy and lactation would impact skeletal muscle oxidative capacity and lipid metabolism in adolescent offspring fed a postweaning (pw) Western-style diet (WD) or control diet (CD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!