Conserved structural features anchor biofilm-associated RTX-adhesins to the outer membrane of bacteria.

FEBS J

Protein Function Discovery Group, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada.

Published: May 2018

Repeats-in-toxin (RTX) adhesins are present in many Gram-negative bacteria to facilitate biofilm formation. Previously, we reported that the 1.5-MDa RTX adhesin (MpIBP) from the Antarctic bacterium, Marinomonas primoryensis, is tethered to the bacterial cell surface via its N-terminal Region I (RI). Here, we show the detailed structural features of RI. It has an N-terminal periplasmic retention domain (RIN), a central domain (RIM) that can insert into the β-barrel of an outer-membrane pore protein during MpIBP secretion, and three extracellular domains at its C terminus (RIC) that transition the protein into the extender region (RII). RIN has a novel β-sandwich fold with a similar shape to βγ-crystallins and tryptophan RNA attenuation proteins. Because RIM undergoes fast and extensive degradation in vitro, its narrow cylindrical shape was rapidly measured by small-angle X-ray scattering before proteolysis could occur. The crystal structure of RIC comprises three tandem β-sandwich domains similar to those in RII, but increasing in their hydrophobicity with proximity to the outer membrane. In addition, the key Ca ion that rigidifies the linkers between RII domains is not present between the first two of these RIC domains. This more flexible RI linker near the cell surface can act as a 'pivot' to help the 0.6-μm-long MpIBP sweep over larger volumes to find its binding partners. Since the physical features of RI are well conserved in the RTX adhesins of many Gram-negative bacteria, our detailed structural and bioinformatic analyses serve as a model for investigating the surface retention of biofilm-forming bacteria, including human pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.14441DOI Listing

Publication Analysis

Top Keywords

structural features
8
outer membrane
8
rtx adhesins
8
adhesins gram-negative
8
gram-negative bacteria
8
cell surface
8
detailed structural
8
conserved structural
4
features anchor
4
anchor biofilm-associated
4

Similar Publications

Multi-objective design of multi-material truss lattices utilizing graph neural networks.

Sci Rep

January 2025

Advanced Manufacturing Lab, ETH Zürich, Leonhardstrasse 21, 8092, Zurich, Switzerland.

The rapid advancements in additive manufacturing (AM) across different scales and material classes have enabled the creation of architected materials with highly tailored properties. Beyond geometric flexibility, multi-material AM further expands design possibilities by combining materials with distinct characteristics. While machine learning has recently shown great potential for the fast inverse design of lattice structures, its application has largely been limited to single-material systems.

View Article and Find Full Text PDF

Metasurface higher-order poincaré sphere polarization detection clock.

Light Sci Appl

January 2025

National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, 410082, Changsha, China.

Accurately and swiftly characterizing the state of polarization (SoP) of complex structured light is crucial in the realms of classical and quantum optics. Conventional strategies for detecting SoP, which typically involves a sequence of cascaded optical elements, are bulky, complex, and run counter to miniaturization and integration. While metasurface-enabled polarimetry has emerged to overcome these limitations, its functionality predominantly remains confined to identifying SoP within the standard Poincaré sphere framework.

View Article and Find Full Text PDF

High-temperature structural disorders stabilize hydrous aluminosilicates in the mantle transition zone.

Nat Commun

January 2025

Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.

Hydrous aluminosilicates are important deep water-carriers in sediments subducting into the deep mantle. To date, it remains enigmatic how hydrous aluminosilicates withstand extremely high temperatures in the mantle transition zone. Here we systematically investigate the crystal structures and chemical compositions of typical hydrous aluminosilicates using single-crystal X-ray diffraction, electron probe microanalyzer, and nanoscale secondary ion mass spectrometry.

View Article and Find Full Text PDF

Time Code for multifunctional 3D printhead controls.

Nat Commun

January 2025

Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, USA.

Direct Ink Writing, an extrusion-based 3D printing technique, has attracted growing interest due to its ability to process a broad range of materials and integrate multifunctional printheads with features such as shape-changing nozzles, in-situ curing, material switching, and material mixing. Despite these advancements, incorporating auxiliary controls into Geometry Code (G-Code), the standard programming language for these printers, remains challenging. G-Code's line-by-line execution requires auxiliary control commands to interrupt the print path motion, causing defects in the printed structure.

View Article and Find Full Text PDF

Highly printable, strong, and ductile ordered intermetallic alloy.

Nat Commun

January 2025

Department of Materials Science and Engineering, College of Engineering, City University of Hong Kong, Hong Kong, China.

Ordered intermetallic alloys are renowned for their impressive mechanical, chemical, and physical properties, making them appealing for various fields. However, practical applications of them have long been severely hindered due to their severe brittleness and poor fabricability. It is difficult to fabricate such materials into components with complex geometries through traditional subtractive manufacturing methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!