AI Article Synopsis

  • The study evaluates the effectiveness of using R2* and quantitative susceptibility mapping (QSM) to measure liver iron concentration (LIC) in a high-field MRI environment (7 Tesla).
  • Twelve mice were injected with varying amounts of Fe-dextran to induce liver iron overload, after which serum ferritin levels and LIC were measured using several techniques, including MRI and mass spectrometry.
  • Results showed strong linear relationships between serum ferritin, LIC, R2*, and susceptibility, with the latter being determined as a more reliable method for LIC quantification, providing a conversion factor consistent with previous research.

Article Abstract

Purpose: To assess the feasibility of quantifying liver iron concentration (LIC) using R2* and quantitative susceptibility mapping (QSM) at a high field strength of 7 Tesla (T).

Methods: Five different concentrations of Fe-dextran were injected into 12 mice to produce various degrees of liver iron overload. After mice were sacrificed, blood and liver samples were harvested. Ferritin enzyme-linked immunosorbent assay (ELISA) and inductively coupled plasma mass spectrometry were performed to quantify serum ferritin concentration and LIC. Multiecho gradient echo MRI was conducted to estimate R2* and the magnetic susceptibility of each liver sample through complex nonlinear least squares fitting and a morphology enabled dipole inversion method, respectively.

Results: Average estimates of serum ferritin concentration, LIC, R2*, and susceptibility all show good linear correlations with injected Fe-dextran concentration; however, the standard deviations in the estimates of R2* and susceptibility increase with injected Fe-dextran concentration. Both R2* and susceptibility measurements also show good linear correlations with LIC (R  = 0.78 and R  = 0.91, respectively), and a susceptibility-to-LIC conversion factor of 0.829 ppm/(mg/g wet) is derived.

Conclusion: The feasibility of quantifying LIC using MR-based  R2* and QSM at a high field strength of 7T is demonstrated. Susceptibility quantification, which is an intrinsic property of tissues and benefits from being field-strength independent, is more robust than R2* quantification in this ex vivo study. A susceptibility-to-LIC conversion factor is presented that agrees relatively well with previously published QSM derived results obtained at 1.5T and 3T.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107404PMC
http://dx.doi.org/10.1002/mrm.27173DOI Listing

Publication Analysis

Top Keywords

liver iron
12
concentration lic
12
r2* susceptibility
12
r2* quantitative
8
quantitative susceptibility
8
susceptibility mapping
8
iron concentration
8
feasibility quantifying
8
lic r2*
8
qsm high
8

Similar Publications

This work researched the influence and mechanism of CD155 on hepatocellular carcinoma advancement. CD155 expression and its effect on survival of hepatocellular carcinoma patients were analyzed based on the GEPIA2 database. String software predicted the interacting between CD155 and CD96, which was further verified by co-immunoprecipitation experiment.

View Article and Find Full Text PDF

The high mortality rate from hepatocellular carcinoma (HCC) is due primarily to challenges in early diagnosis and the development of drug resistance in advanced stages. Many first-line chemotherapeutic drugs induce ferroptosis, a form of programmed cell death dependent on ferrous iron-mediated oxidative stress, suggesting that drug resistance and ensuing tumor progression may in part stem from reduced ferroptosis. Since circular RNAs (circRNAs) have been shown to influence tumor development, we examined whether specific circRNAs may regulate drug-induced ferroptosis in HCC.

View Article and Find Full Text PDF

Angiotensin II (Ang II) is the most active peptide hormone produced by the renin-angiotensin system (RAS). Genetic deletion of genes that ultimately restrict Ang II formation has been shown to result in marked anemia in mice. In this study, adult mice with a genetic deletion of the RAS precursor protein angiotensinogen (Agt-KO) were used.

View Article and Find Full Text PDF

Hereditary hemochromatosis occurs due to genetic mutations, namely, cysteine-to-tyrosine substitution at amino acid 282 (C282Y) and histidine-to-aspartic acid substitution at 63 (H63D) mutations. The role of H63D mutation in hemochromatosis is less clear, and its penetrance is low even in homozygotes. Therefore, iron overload in H63D heterozygotes is extremely rare and scarcely reported.

View Article and Find Full Text PDF

Cuproplasia and cuproptosis, two sides of the coin.

Cancer Commun (Lond)

January 2025

Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China.

Copper is an essential micronutrient in the human body, mainly acting as a crucial cofactor required for a wide range of physiological processes across nearly all cell types. Recent advances revealed that tumor cells seize copper to fulfill their rapid proliferation, metastasis, immune evasion, and so on by reprogramming the copper regulatory network, defined as cuproplasia. Thus, targeting copper chelation to reduce copper levels has been considered a rational tumor therapy strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!