A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Plant stem cells and de novo organogenesis. | LitMetric

Plant stem cells and de novo organogenesis.

New Phytol

State Key Laboratory of Crop Biology, College of Life Sciences, College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China.

Published: June 2018

Contents Summary 1334 I. Introduction 1334 II. Regeneration-initial cell: the origin of regeneration 1335 III. Acquiring regeneration competency: the essential intermediate step for hormone-induced regeneration 1335 IV. Hormonal induction of stem cell regulators: the program for de novo establishment of apical meristems 1337 V. Conclusions and perspectives 1337 Acknowledgements 1338 Author contributions 1338 References 1338 SUMMARY: High cellular plasticity confers remarkable regeneration capacity to plants. Based on the activity of stem cells and their regulators, higher plants are capable of regenerating new individuals. De novo organogenesis exemplifies the regeneration of the whole plant body and is exploited widely in agriculture and biotechnology. In this Tansley insight article, we summarize recent advances that facilitate our understanding of the molecular mechanisms underlying de novo organogenesis. According to our current knowledge, this process can be divided into three steps, including activation of regeneration-initial cells, acquisition of competency and de novo establishment of apical meristems. The functions of stem cells and their regulators are critical to de novo organogenesis, whereas auxin and cytokinin act as triggers and linkers between different steps.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.15106DOI Listing

Publication Analysis

Top Keywords

novo organogenesis
16
stem cells
12
regeneration 1335
8
novo establishment
8
establishment apical
8
apical meristems
8
cells regulators
8
novo
6
regeneration
5
plant stem
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!