A simple way to an ultra-robust superhydrophobic fabric with mechanical stability, UV durability, and UV shielding property.

J Colloid Interface Sci

School of Environmental and Material Engineering, Yantai University, Yantai 264405, China. Electronic address:

Published: July 2018

Hypothesis: Development of an ultra-robust superhydrophobic fabric with mechanical stability, UV durability, and UV shielding by a simple method is highly desirable, yet it remains a challenge that current technologies have been unable to fully address.

Experiments: Herein, the original fabric is immersed into the solution containing ZnO nanoparticle and PDMS (polydimethylsiloxane), and the fiber surfaces are uniformly covered by a ZnO-PDMS layer after thermal treatment at 110 °C for 30 min.

Findings: Droplets of water and corrosive liquids including strong acid, strong alkali, and saturated salt solution display sphere shape on the ZnO-PDMS coated fabric surface. The stable binding of ZnO-PDMS layer onto the fibers allows for the fabric coating with robust superhydrophobicity, and the coated fabric still displays superhydrophobicity after hand twisting, knife scratching, finger touching, and even cycles of sandpaper abrasion. The ZnO-PDMS coated fabric can also keep its superhydrophobic property when exposed to long term UV illumination, demonstrating its UV resistance. Moreover, the uniformly distribution of ZnO nanoparticles on fibers allows the ZnO-PDMS coated fabric to display UV shielding property.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2018.03.038DOI Listing

Publication Analysis

Top Keywords

coated fabric
16
zno-pdms coated
12
ultra-robust superhydrophobic
8
fabric
8
superhydrophobic fabric
8
fabric mechanical
8
mechanical stability
8
stability durability
8
durability shielding
8
shielding property
8

Similar Publications

A self-healing superhydrophobic coating was successfully prepared in the present work. The coating comprised PEG (polyethylene glycol) and FeO nanoparticles modified with stearic acid (SA) via hydrogen bonds, using polyamide resin and epoxy as binders. The chemically damaged surface could restore its original superhydrophobic structure and chemical composition after 4 h at room temperature or 10 min of heating in an oven with a self-healing efficiency of 95.

View Article and Find Full Text PDF

One-Step Fabrication Process of Silica-Titania Superhydrophobic UV-Blocking Thin Coatings onto Polymeric Films.

Biomimetics (Basel)

December 2024

Department of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.

Developing a durable multifunctional superhydrophobic coating on polymeric films that can be industrially scalable is a challenge in the field of surface engineering. This article presents a novel method for a scalable technology using a simple single-step fabrication of a superhydrophobic coating on polymeric films that exhibits excellent water-repelling and UV-blocking properties, along with impressive wear resistance and chemical robustness. A mixture of titanium precursors, tetraethylorthosilicate (TEOS), hydrophobic silanes and silica nano/micro-particles is polymerized directly on a corona-treated polymeric film which reacts with the surface via siloxane chemistry.

View Article and Find Full Text PDF

Enhancing Quasi-Solid-State Lithium-Metal Battery Performance: Multi-Interlayer, Melt-Infused Lithium and Lithiophilic Coating Strategies for Interfacial Stability in Li||VS-DSGNS-LATP|PEO-PVDF||NMC622-AlO Systems.

ACS Appl Mater Interfaces

December 2024

Advanced Functional Nanomaterials Research Laboratory, Centre for Nanoscience and Technology, Madanjeet School of Green Energy Technologies, Pondicherry University (A Central University), Dr. R. Venkataraman Nagar, Kalapet, Puducherry 605014, India.

The development of quasi-solid-state lithium metal batteries (QSSLMBs) is hindered by inadequate interfacial contact, poor wettability between electrodes and quasi-solid-state electrolytes, and significant volume changes during long-term cycling, leading to safety risks and cataclysmic failures. Here, we report an innovative approach to enhance interfacial properties through the construction of QSSLMBs. A multilayer design integrates a microwave-synthesized LiAlTi(PO) (LATP) ceramic electrolyte, which is surface-coated with a lithiophilic conductive ink comprising VS and disulfonated functionalized graphene nanosheets (VS-DSGNS) using a low-cost nail-polish binder.

View Article and Find Full Text PDF

Fabrication of bio-mimic nanozyme based on Mxene@AuNPs and molecular imprinted poly(thionine) films for creatinine detection.

Biosens Bioelectron

December 2024

Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea. Electronic address:

Creatinine (Ctn) is a biomarker for chronic kidney disease (CKD). In this study, a highly sensitive and specific detection method for Ctn based on a molecularly imprinted polymer (MIP) based electrochemical biosensor was developed. Mxene (Mx), which has high absorption properties, was modified using carbon screen-printed electrodes (SPCE).

View Article and Find Full Text PDF

Achieving high shielding effectiveness in electromagnetic shielding materials relies heavily on high conductivity, yet simultaneously enhancing the absorption loss remains a persistent challenge. Consequently, the study successfully creates efficient electromagnetic shielding composite films with a unique grape-like bunch structure of hollow nanosilver (HCAF) through layer-by-layer assembly. The utilization of poly(dopamine) (PDA) to anchor nanosilver granules (AgNPs) onto cellulose nanofibers (CNF) results in the formation of CNF@PDA@AgNPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!