Responses of neurons in the feline inferior colliculus to modulated electrical stimuli applied on and within the ventral cochlear nucleus; Implications for an advanced auditory brainstem implant.

Hear Res

Biomedical Engineering Department, School of Engineering & Institute of Material Sciences, The University of Connecticut at Storrs, 260Glenbrook Rd, Unit 3247, Storrs, Connecticut 06269-3247, USA. Electronic address:

Published: June 2018

Auditory brainstem implants (ABIs) can restore useful hearing to persons with deafness who cannot benefit from cochlear implants. However, the quality of hearing restored by ABIs rarely is comparable to that provided by cochlear implants in persons for whom those are appropriate. In an animal model, we evaluated elements of a prototype of an ABI in which the functions of macroelectrodes on the surface of the dorsal cochlear nucleus would be integrated with the function of multiple penetrating microelectrodes implanted into the ventral cochlear nucleus. The surface electrodes would convey most of the range of loudness percepts while the intranuclear microelectrodes would sharpen and focus pitch percepts. In the present study, stimulating electrodes were implanted chronically on the surface of the animal's dorsal cochlear nucleus (DCN) and also within their ventral cochlear nucleus (VCN). Recording microelectrodes were implanted into the central nucleus of the inferior colliculus (ICC). The electrical stimuli were sinusoidally modulated stimulus pulse trains applied on the DCN and within the VCN. Temporal encoding of neuronal responses was quantified as vector strength (VS) and as full-cycle rate of neuronal activity in the ICC. VS and full-cycle AP rate were measured for 4 stimulation modes; continuous and transient amplitude modulation of the stimulus pulse trains, each delivered via the macroelectrode on the surface of the DCN and then by the intranuclear penetrating microelectrodes. In the proposed clinical device the functions of the surface and intranuclear microelectrodes could best be integrated if there is minimal variation in the neuronal responses across the range of modulation depth, modulation frequencies, and across the four stimulation modes. In this study VS did vary as much as 34% across modulation frequency and modulation depth within a stimulation mode, and up to 40% between modulation modes. However, these intra- and inter-mode variances differed for different stimulation rates, and at 500 Hz the inter-mode differences in VS and across the range of modulation frequencies and modulation depths was = 24% and the intra-modal differences were = 15%. The findings were generally similar for rate encoding of modulation depth, although the depth of transient amplitude modulation delivered by the surface electrode was weakly encoded as full-cycle rate. Overall, our findings support the concept of a clinical ABI that employs surface stimulation and intranuclear microstimulation in an integrated manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940528PMC
http://dx.doi.org/10.1016/j.heares.2018.03.009DOI Listing

Publication Analysis

Top Keywords

cochlear nucleus
20
ventral cochlear
12
full-cycle rate
12
modulation depth
12
modulation
10
inferior colliculus
8
electrical stimuli
8
auditory brainstem
8
cochlear implants
8
dorsal cochlear
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!