The suppression effect of graphene in the fire hazards and smoke toxicity of polymer composites has been seriously limited by both mass production and weak interfacial interaction. Though the electrochemical preparation provides an available approach for mass production, exfoliated graphene could not strongly bond with polar polymer chains. Herein, mussel-inspired functionalization of electrochemically exfoliated graphene was successfully processed and added into polar thermoplastic polyurethane matrix (TPU). As confirmed by SEM patterns of fracture surface, functionalized graphene possessing abundant hydroxyl could constitute a forceful chains interaction with TPU. By the incorporation of 2.0 wt % f-GNS, peak heat release rate (pHRR), total heat release (THR), specific extinction area (SEA), as well as smoke produce rate (SPR) of TPU composites were approximately decreased by 59.4%, 27.1%, 31.9%, and 26.7%, respectively. A probable mechanism of fire retardant was hypothesized: well-dispersed f-GNS constituted tortuous path and hindered the exchange process of degradation product with barrier function. Large quantities of degradation product gathered round f-GNS and reacted with flame retardant to produce the cross-linked and high-degree graphited residual char. The simple functionalization for electrochemically exfoliated graphene impels the application of graphene in the fields of flame retardant composites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2018.03.021 | DOI Listing |
Acc Chem Res
January 2025
Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom.
ConspectusThe emergence of two-dimensional (2D) materials, such as graphene, transition-metal dichalcogenides (TMDs), and hexagonal boron nitride (h-BN), has sparked significant interest due to their unique physicochemical, optical, electrical, and mechanical properties. Furthermore, their atomically thin nature enables mechanical flexibility, high sensitivity, and simple integration onto flexible substrates, such as paper and plastic.The surface chemistry of a nanomaterial determines many of its properties, such as its chemical and catalytic activity.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Materials Science & International Institute of Intelligent Nanorobots and Nanosystems, State Key Laboratory of Surface Physics, Fudan University, Shanghai, 200438, People's Republic of China.
The recently emerged remote epitaxy technique, utilizing 2D materials (mostly graphene) as interlayers between the epilayer and the substrate, enables the exfoliation of crystalline nanomembranes from the substrate, expanding the range of potential device applications. However, remote epitaxy has been so far applied to a limited range of material systems, owing to the need of stringent growth conditions to avoid graphene damaging, and has therefore remained challenging for the synthesis of oxide nanomembranes. Here, we demonstrate the remote epitaxial growth of an oxide nanomembrane (vanadium dioxide, VO) with a sub-nanometer thick amorphous interlayer, which can withstand potential sputtering-induced damage and oxidation.
View Article and Find Full Text PDFThe widespread demand for battery-powered technologies has propelled the search for efficient and commercially viable electrode materials with fast-charging abilities. Reported herein is an MoS2-expanded graphite (EG) composite as a stable and high-rate lithium-ion battery (LIB) anode, delivering specific capacities of 796 mAh g-1 at 0.5 A g-1 and 320 mAh g-1 at 20 A g-1 over 400 cycles.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, Australia.
Colloidal properties of nanoparticles are intricately linked to their morphology. Traditionally, achieving high-concentration dispersions of two-dimensional (2D) nanosheets has proven challenging as they tend to agglomerate or re-stack under increased surface contact and Van der Waals attraction. Here, we unveil an excluded volume effect enabled by 2D morphology, which can be coupled with electrostatic repulsion to synthesize high-concentration aqueous graphene dispersions.
View Article and Find Full Text PDFSmall
December 2024
Institute of Energy Power Innovation, North China Electric Power University, Beijing, 102206, P. R. China.
The hydrolysis of lightweight metal-based materials is a promising technology for supplying hydrogen to portable fuel cells. Various additives for the catalytic modification of Mg hydrolysis have been investigated. Efficient catalysts and small magnesium particle sizes are key to enhancing the rate of hydrogen production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!