Lake Urmia (LU) once was the second largest hypersaline lake in the world, covering up to 6000km, but has undergone catastrophic desiccation in recent years resulting in loss of 90% of its area and extensive coverage by playas and marshlands that represent a source of salt and dust. This study examines daily Aerosol Optical Depth (AOD) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) between 2001 and 2015 over northwestern Iran, which encompasses LU. Intriguingly, salt emissions from the LU surface associated with ongoing desiccation do not drive the study region's AOD profile, whereas pollution transported from other regions and emissions around LU are more important. Signatures of increasing local crustal emissions are most evident outside of the peak dust season (January, February, and October) and on the periphery of LU. AOD has generally increased in the latter half of the study period with the onset of the AOD ramp-up starting a month earlier in the spring season when comparing 2009-2015 versus earlier years. Results indicate that suppression of emissions on the LU border is critical as the combined area of salt and salty soil bodies around LU have increased by two orders of magnitude in the past two decades, and disturbing these areas via activities such as grazing and salt harvesting on the lake surface can have more detrimental impacts on regional pollution as compared to benefits. These results have important implications for public health, climate, the hydrological cycle, and pollution control efforts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5949080 | PMC |
http://dx.doi.org/10.1016/j.scitotenv.2018.03.148 | DOI Listing |
J Environ Manage
November 2024
Eawag - Swiss Federal Institute for Aquatic Science and Technology, Dübendorf, Switzerland; Department of Civil and Environmental Engineering and Earth Science, University of Notre Dame, IN, USA. Electronic address:
This study investigates the drought of three major terminal lakes: Great Salt Lake, Salton Sea, and Lake Urmia, driven by socio-hydrological lock-in-a phenomenon characterized by feedback loops between human activities and environmental processes. Previous research has linked this drying to socio-hydrological lock-in, where rational actions by individuals collectively lead to suboptimal outcomes, exacerbating water scarcity and ecological degradation. Despite existing studies, a critical knowledge gap remains in understanding how these feedback mechanisms operate across different socio-economic and ecological contexts.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Department of Soil Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
Newly formed playas, such as those resulting from the desiccation of Lake Urmia (LU) in northwest Iran, are significant global dust sources with implications for human health and the environment. Stabilizing these surfaces affordably can be achieved using locally sourced magnesium-enriched brine. To evaluate this approach, for LU playa, we examined the accumulation of ions, minerals deposition, and salt crust (Cr) formation in LU brine under both natural and laboratory conditions.
View Article and Find Full Text PDFJ Environ Manage
November 2024
Department of Sustainable Development, Environmental Science and Engineering (SEED), KTH Royal Institute of Technology, Stockholm, Sweden.
Given the substantial effects of agricultural practices on the environment, this paper introduces a novel stakeholder-based framework for assessing the ecosystem services (ESs) provided by agricultural areas. Ecosystem services include essential functions such as water supply, food production, carbon storage, soil erosion control, and habitat support. In addition to ESs, water footprint is also taken into account to evaluate the impacts of agricultural activities on water resources.
View Article and Find Full Text PDFEnviron Monit Assess
September 2024
Department of Soil Science, Faculty of Agriculture, Tabriz University, Tabriz, Iran.
Soil salinization stands as a prominent global environmental challenge, necessitating enhanced assessment methodologies. This study is dedicated to refining soil salinity assessment in the Lake Urmia region of Iran, utilizing multi-year data spanning from 2015 to 2018. To achieve this objective, soil salinity was measured at 915 sampling points during the 2015-2018 timeframe.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!