Microtubules are polymeric tubes that switch between phases of growth and shortening, and this property is essential to drive key cellular processes. Microtubules are composed of protofilaments formed by longitudinally arranged tubulin dimers. Microtubule dynamics can be affected by structural perturbations at the plus end, such as end tapering, and targeting only a small subset of protofilaments can alter the dynamics of the whole microtubule. Microtubule lattice plasticity, including compaction along the longitudinal axis upon GTP hydrolysis and tubulin dimer loss and reinsertion along microtubule shafts can also affect microtubule dynamics or mechanics. Microtubule behaviour can be fine-tuned by post-translational modifications and tubulin isotypes, which together support the diversity of microtubule functions within and across various cell types or cell cycle and developmental stages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ceb.2018.02.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!