Wastewater effluents increase the nutrient load of receiving streams while introducing a myriad of anthropogenic chemical pollutants that challenge the resident aquatic (micro)biota. Disentangling the effects of both kind of stressors and their potential interaction on the dissemination of antibiotic resistance genes in bacterial communities requires highly controlled manipulative experiments. In this work, we investigated the effects of a combined regime of nutrients (at low, medium and high concentrations) and a mixture of emerging contaminants (ciprofloxacin, erythromycin, sulfamethoxazole, diclofenac, and methylparaben) on the bacterial composition, abundance and antibiotic resistance profile of biofilms grown in artificial streams. In particular, we investigated the effect of this combined stress on genes encoding resistance to ciprofloxacin (qnrS), erythromycin (ermB), sulfamethoxazole (sul1 and sul2) as well as the class 1 integron-integrase gene (intI1). Only genes conferring resistance to sulfonamides (sul1 and sul2) and intI1 gene were detected in all treatments during the study period. Besides, bacterial communities exposed to emerging contaminants showed higher copy numbers of sul1 and intI1 genes than those not exposed, whereas nutrient amendments did not affect their abundance. However, bacterial communities exposed to both emerging contaminants and a high nutrient concentration (1, 25 and 1 mg L of phosphate, nitrate and ammonium, respectively) showed the highest increase on the abundance of sul1 and intI1 genes thus suggesting a factors synergistic effect of both stressors. Since none of the treatments caused a significant change on the composition of bacterial communities, the enrichment of sul1 and intI1 genes within the community was caused by their dissemination under the combined pressure exerted by nutrients and emerging contaminants. To the best of our knowledge, this is the first study demonstrating the contribution of nutrients on the maintenance and spread of antibiotic resistance genes in streambed biofilms under controlled conditions. Our results also highlight that nutrients could enhance the effect of emerging contaminants on the dissemination of antibiotic resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2018.03.025 | DOI Listing |
Foods
January 2025
Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.
Canning extends the shelf life of seafood products while preserving their quality. It is increasingly considered a more sustainable food processing method due to the primary fishing methods used for key species and the lower energy costs compared to the production of fresh and frozen fish. However, canning can change key components, allow some contaminants to persist, and generate undesirable compounds.
View Article and Find Full Text PDFSci Total Environ
January 2025
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
There is a major gap in the occurrence of mixed emerging contaminants, which hinders our efforts in exploring their behaviors and transport in environmental media, as well as their toxicity to human and ecosystem. This study assessed the occurrence and their correlations of mixed contamination by microplastics (MPs), per- and polyfluoroalkyl substances (PFASs), antibiotics, and antibiotic resistance genes (ARGs) in groundwater collected from a pharmaceutical and chemical industrial park. MPs, PFASs, antibiotics and ARGs were detected at all monitoring wells.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-Process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
Microplastics (MPs) are emerging pollutants of global concern, while heavy metals such as copper ions (Cu) are longstanding environmental contaminants with well-documented toxicity. This study investigates the independent and combined effects of polystyrene microplastics (PS-MPs) and Cu on the physiological and biochemical responses of rice seedlings ( L.), a key staple crop.
View Article and Find Full Text PDFChemosphere
January 2025
Environmental Chemistry Laboratory, Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083970, Brazil. Electronic address:
Brazil's extensive agricultural area makes it the world's leading soybeans and sugarcane producer. Therefore, the use of large amounts of pesticides directly impacts all environmental compartments, including rainwater. We analyzed 14 pesticides and 5 degradation products in rainwater from three cities in the State of São Paulo, southeastern Brazil, with distinct land uses.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China. Electronic address:
With the aid of radical and non-radical reactive species (RS), advanced oxidation processes can efficiently degrade emerging organic contaminants including antibiotics but may generate toxic transformation products (TPs). However, the detoxification capacity of popular RS has not been well elucidated. This study compared the detoxification of enrofloxacin (ENR) with three RS-dominated systems: O, SO+OH, OH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!