Reversible Magnetic Agglomeration: A Mechanism for Thermodynamic Control over Nanoparticle Size.

Angew Chem Int Ed Engl

Sandia National Laboratories, Albuquerque, NM, 87111, USA.

Published: June 2018

We present a method for the synthesis and precise size control of magnetic nanoparticles in a reversible magnetic agglomeration mechanism. In this approach, nanoparticles nucleate and grow until a critical susceptibility is reached, in which magnetic attraction overcomes dispersive forces, leading to agglomeration and precipitation. This phase change in the system arrests nanoparticle growth and gives true thermodynamic control over the size of nanoparticles. We then show that increasing the alkyl chain length of the surfactant, and hence increasing steric stabilization, allows nanoparticles to grow to larger sizes before agglomeration occurs. Therefore, simply by choosing the correct surfactant, the size and magnetic properties of iron nanoparticles can be tailored for a particular application. With the continuous addition of the precursor solution, we can repeat the steps of nucleation, growth, and magnetic agglomeration indefinitely, making the approach suitable for large scale syntheses.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201800959DOI Listing

Publication Analysis

Top Keywords

magnetic agglomeration
12
reversible magnetic
8
agglomeration mechanism
8
thermodynamic control
8
agglomeration
5
magnetic
5
nanoparticles
5
mechanism thermodynamic
4
control nanoparticle
4
size
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!