Electrocaloric effect in cubic Hubbard nanoclusters.

Sci Rep

Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, ulica Pomorska 149/153, PL90-236, Łódź, Poland.

Published: March 2018

In the paper a computational study of the electrocaloric effect is presented for a cubic nanocluster consisting of 8 sites. The system of interest is described by means of an extended Hubbard model in external electric field at half filling of the energy levels. The thermodynamic description is obtained within canonical ensemble formalism on the basis of exact numerical diagonalization of the system Hamiltonian. In particular, the entropy and the specific heat are determined as a function of temperature and external electric field. The electrocaloric effect is described quantitatively by isothermal entropy change. The behaviour of this quantity is thoroughly analysed as a function of extended Hubbard model parameters, temperature and electric field variation magnitude. The existence of direct and inverse electrocaloric effect is predicted for some range of model parameters. A high sensitivity to Hubbard model parameters is shown, what paves the way towards controlling and tuning the effect. A non-linear, quadratic dependence of isothermal entropy change on electric field variation magnitude is demonstrated. The potential for applications of electrocaloric effect in strongly correlated nanoclusters is shown.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5865123PMC
http://dx.doi.org/10.1038/s41598-018-23443-xDOI Listing

Publication Analysis

Top Keywords

electric field
16
hubbard model
12
model parameters
12
extended hubbard
8
external electric
8
isothermal entropy
8
entropy change
8
field variation
8
variation magnitude
8
electrocaloric
5

Similar Publications

The advancement of photocatalytic technology for solar-driven hydrogen (H2) production remains hindered by several challenges in developing efficient photocatalysts. A key issue is the rapid recombination of charge carriers, which significantly limits the light-harvesting ability of materials like BiOCl and Cu2SnS3 quantum dots (CTS QDs), despite the faster charge mobility and quantum confinement effect, respectively. Herein, a BiOCl/CTS (BCTS) heterostructure was synthesized by loading CTS QDs onto BiOCl 2D nanosheets (NSs), that demonstrated excellent photocatalytic activity under visible light irradiation.

View Article and Find Full Text PDF

The ongoing challenge of water pollution necessitates innovative approaches to remove organic contaminants from wastewater. In this work, new two-dimensional S-scheme heterojunction photocatalysts BiO/CdS and MoS/BiO/CdS that are intended for the effective photocatalytic destruction of 4-nitrophenol, a dangerous organic pollutant, are synthesized and characterized. Utilizing a solvothermal method, successfully generated these ternary nanocomposites, which were characterized through various techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), high resolution transmission electronmicroscopy (HRTEM), Brunauer-Emmett-Telle (BET) and diffuse reflectance spectroscopy (DRS).

View Article and Find Full Text PDF

Combating Antibiotic Resistance in Persulfate-Based Advanced Oxidation Processes: Activation Methods and Energy Consumption.

Environ Res

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China.

Antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) have become increasing concerning issues, threatening human health. Persulfate-based advanced oxidation processes (PS-AOPs), due to their remarkable potential in combating antibiotic resistance, have garnered significant attention in the field of disinfection in recent years. In this review, we systematically evaluated the efficacy and underlying mechanism of PS integration with various activation methods for the elimination of ARB/ARGs.

View Article and Find Full Text PDF

In the field of medical science, skin segmentation has gained significant importance, particularly in dermatology and skin cancer research. This domain demands high precision in distinguishing critical regions (such as lesions or moles) from healthy skin in medical images. With growing technological advancements, deep learning models have emerged as indispensable tools in addressing these challenges.

View Article and Find Full Text PDF

Influence of Coil Orientation on the TMS-Induced Electric Field within the Clinically Recommended Brain Region for Major Depressive Disorder.

Brain Stimul

January 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Neuromodulation and Neurorepair, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 102206, China. Electronic address:

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!