Cell-free protein synthesis has emerged as a powerful approach for expanding the range of genetically encoded chemistry into proteins. Unfortunately, efforts to site-specifically incorporate multiple non-canonical amino acids into proteins using crude extract-based cell-free systems have been limited by release factor 1 competition. Here we address this limitation by establishing a bacterial cell-free protein synthesis platform based on genomically recoded Escherichia coli lacking release factor 1. This platform was developed by exploiting multiplex genome engineering to enhance extract performance by functionally inactivating negative effectors. Our most productive cell extracts enabled synthesis of 1,780 ± 30 mg/L superfolder green fluorescent protein. Using an optimized platform, we demonstrated the ability to introduce 40 identical p-acetyl-L-phenylalanine residues site specifically into an elastin-like polypeptide with high accuracy of incorporation ( ≥ 98%) and yield (96 ± 3 mg/L). We expect this cell-free platform to facilitate fundamental understanding and enable manufacturing paradigms for proteins with new and diverse chemistries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5865108PMC
http://dx.doi.org/10.1038/s41467-018-03469-5DOI Listing

Publication Analysis

Top Keywords

cell-free protein
12
protein synthesis
12
genomically recoded
8
amino acids
8
release factor
8
cell-free
5
synthesis
4
synthesis genomically
4
recoded bacteria
4
bacteria enables
4

Similar Publications

The aim of this study was to investigate the effect of dental pulp stem cell-derived exosomes (DPSCs-Exos) on the biological behaviour of fibroblasts, particularly on keloid fibroblasts (KFs) and normal skin fibroblasts (NFs), with a view to providing new insights into cellular regenerative medicine. We obtained DPSCs-Exos by ultracentrifugation and co-cultured it with KFs and NFs. We detected its effect on cell proliferation using the CCK-8 assay; cell migration ability by cell scratch and Transwell assays; extracellular matrix synthesis using the hydroxyproline content assay; the expression levels of genes associated with fibrosis by PCR assay; and the expression levels of proteins related to fibrosis in the cells using the Western Blot method.

View Article and Find Full Text PDF

Background: As cell-free nanotherapeutics, extracellular vesicles derived from mesenchymal stem cells (MSC-EVs) have shown potential therapeutic action against liver diseases. However, their effects on autoimmune hepatitis (AIH) are not yet well understood.

Methods And Results: In this study, we utilized a well-established concanavalin A (Con A)-induced fulminant hepatitis mouse model to investigate the effects of MSC-EVs on AIH.

View Article and Find Full Text PDF

Several protein expression platforms exist for a wide variety of biopharmaceutical needs. A substantial proportion of research and development into protein expression platforms and their optimization since the mid-1900s is a result of the production of viral antigens for use in subunit vaccine research. This review discusses the seven most popular forms of expression systems used in the past decade-bacterial, insect, mammalian, yeast, algal, plant and cell-free systems-in terms of advantages, uses and limitations for viral antigen production in the context of subunit vaccine research.

View Article and Find Full Text PDF

The neonatal period is a critical phase for the development of the intestinal immune system, marked by rapid adaptation to the external environment and unique nutritional demands. Breast milk plays a pivotal role in this transition, yet the mechanisms by which it influences neonatal mucosal immunity remain unclear. This review examines the potential mechanisms by which cell-free DNA (cfDNA) in breast milk may impact neonatal immune development, particularly through Toll-like receptor 9 (TLR9) signalling and gut microbiota interactions.

View Article and Find Full Text PDF

Leveraging Saliva for Insights into Head and Neck Cancer.

Int J Mol Sci

December 2024

Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA.

Head and neck cancer (HNC) represents a heterogeneous group of malignancies with increasing global incidence and notable mortality. Early detection is essential for improving survival rates and minimizing recurrence; however, existing diagnostic methods are often invasive and complex. There is a need for noninvasive and more effective approaches for early detection and real-time monitoring of HNC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!