Chronic obstructive pulmonary disease (COPD) has been recently characterized as a disease of accelerated lung aging, but the mechanism remains unclear. Tetraspanins have emerged as key players in malignancy and inflammatory diseases. Here, we found that CD9/CD81 double knockout (DKO) mice with a COPD-like phenotype progressively developed a syndrome resembling human aging, including cataracts, hair loss, and atrophy of various organs, including thymus, muscle, and testis, resulting in shorter survival than wild-type (WT) mice. Consistent with this, DNA microarray analysis of DKO mouse lungs revealed differential expression of genes involved in cell death, inflammation, and the sirtuin-1 (SIRT1) pathway. Accordingly, expression of SIRT1 was reduced in DKO mouse lungs. Importantly, siRNA knockdown of CD9 and CD81 in lung epithelial cells additively decreased SIRT1 and Foxo3a expression, but reciprocally upregulated the expression of p21 and p53, leading to reduced cell proliferation and elevated apoptosis. Furthermore, deletion of these tetraspanins increased the expression of pro-inflammatory genes and IL-8. Hence, CD9 and CD81 might coordinately prevent senescence and inflammation, partly by maintaining SIRT1 expression. Altogether, CD9/CD81 DKO mice represent a novel model for both COPD and accelerated senescence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5865149 | PMC |
http://dx.doi.org/10.1038/s41598-018-23338-x | DOI Listing |
Eur J Obstet Gynecol Reprod Biol
January 2025
Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho kitaku, Okayama 700-8558, Japan. Electronic address:
Introduction: Exosomes play an important role in regulating physiological processes and mediating the systemic dissemination of various types of cancer. We investigated the association of exosomal tetraspanins CD9, CD63, and CD81 in patients with ovarian cancer (OC).
Material And Methods: We measured the plasma tetraspanins CD9, CD63, and CD81 by enzyme-linked immunosorbent assay in 91 patients who underwent treatment for OC between April 2018 and March 2024.
Int J Mol Sci
December 2024
Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.
Inflammation significantly influences cellular communication in the oral environment, impacting tissue repair and regeneration. This study explores the role of small extracellular vesicles (sEVs) derived from lipopolysaccharide (LPS)-treated stem cells from the apical papilla (SCAP) in modulating macrophage polarization and osteoblast differentiation. SCAPs were treated with LPS for 24 h, and sEVs from untreated (SCAP-sEVs) and LPS-treated SCAP (LPS-SCAP-sEVs) were isolated via ultracentrifugation and characterized using transmission electron microscopy, Western blot, and Tunable Resistive Pulse Sensing.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy.
This study describes the potential of the conditioned medium (CM) from adipose-derived mesenchymal stromal cells (ASCs) to affect the response of bone cells and support bone remodeling. This was in particular assessed by an in vitro model represented by a 3D human osteoblast-osteoclast co-culture. It has been reported that the effects of ASCs are predominantly attributable to the paracrine effects of their secreted factors, that are present as soluble factors or loaded into extracellular vesicles.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
: Prostate cancer treatment has been revolutionized by targeted therapies, including PARP inhibitors, checkpoint immunotherapies, and PSMA-targeted radiotherapies. Despite such advancements, accurate patient stratification remains a challenge, with current methods relying on genomic markers, tissue staining, and imaging. Extracellular vesicle (EV)-derived proteins offer a novel non-invasive alternative for biomarker discovery, holding promise for improving treatment precision.
View Article and Find Full Text PDFCytotherapy
November 2024
Institute of Immunology and Immunotherapy, College of Medicine and Health, University of Birmingham, Birmingham, UK. Electronic address:
Background Aims: Extracellular vesicles (EVs) have gained traction as potential cell-free therapeutic candidates. Development of purification methods that are scalable and robust is a major focus of EV research. Yet there is still little in the literature that evaluates purification methods against potency of the EV product.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!