The platypus (Ornithorhynchus anatinus) is an evolutionarily distinct mammal, endemic to Australian freshwaters. Many aspects of its ecology and life-history, including detailed understanding of movements, are poorly known, hampered by its cryptic and mainly nocturnal habits and small numbers. We effectively trialled intraperitoneal implanted acoustic transmitters in nine platypuses in the Severn River (NSW), Australia, as a potential approach for studying movements in this challenging species. We tracked platypus movements over six months, at fine and broad spatial scales, using an array of acoustic sensors. Over six months (March-August 2016), four of five adult platypuses (two females\three males) maintained localized movements (average monthly maximums 0.37 km ± 0.03 sd), while one adult, one sub-adult, and one juvenile (males) moved further: average monthly maxima 1.2 km ± 2.0 sd, 0.9 km ± 0.6 sd, 4.5 km ± 5.9 sd, respectively. The longest recorded movement was by a male adult, covering 11.1 km in three days and travelling a maximum distance of about 13 km between records. Only one implanted animal was not detected immediately after release, indicative of transmission failure rather than an adverse event. High cumulative daily movements (daily 1.9 km ± 0.8 sd) indicated high metabolic requirements, with implications for previous estimates of platypus abundances and carrying capacities, essential for effective conservation. This novel approach offers new avenues to investigate relating to mating, nesting, and intraspecific competition behaviours and their temporal and spatial variation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5865170 | PMC |
http://dx.doi.org/10.1038/s41598-018-23461-9 | DOI Listing |
J Neurol Surg B Skull Base
February 2025
Department of Radiology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Türkiye.
In the present study, we investigated the round window (RW) and neighboring anatomical structures using temporal computed tomography (CT) which are important for cochlear implant (CI) electrodes. In this retrospective study, the temporal CT images of 112 adult patients (45 males and 67 females) were evaluated. We classified mastoid pneumatization, and measured RW diameter, RW-carotid canal (CC) distance, RW-facial nerve mastoid segment (FNMS) distance, RW-pyramidal eminence distance, RW-jugular bulb (JB) distance, and RW-internal acoustic canal (IAC) distance.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
January 2025
Laboratory for Biomechanics and Biomaterials (LBB), Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Strasse 1-7, 30625, Hannover, Germany. Electronic address:
In hip arthroplasty, relative movements between the femoral stem and bone can lead to implant loosening, resulting in extensive bone loss. Acoustic emission (AE) analysis is a promising technique for a nondestructive and noninvasive detection of these relative movements. To develop such a detection method, in vitro investigations using piezoelectric AE sensors on implant stems in artificial or human femora are required to characterize the AE signals induced by loosening.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
School of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China.
MEMS acoustic sensors are a type of physical quantity sensor based on MEMS manufacturing technology for detecting sound waves. They utilize various sensitive structures such as thin films, cantilever beams, or cilia to collect acoustic energy, and use certain transduction principles to read out the generated strain, thereby obtaining the targeted acoustic signal's information, such as its intensity, direction, and distribution. Due to their advantages in miniaturization, low power consumption, high precision, high consistency, high repeatability, high reliability, and ease of integration, MEMS acoustic sensors are widely applied in many areas, such as consumer electronics, industrial perception, military equipment, and health monitoring.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Sha Tin, Hong Kong, 999077, China.
Lattice metamaterials emerge as advanced architected materials with superior physical properties and significant potential for lightweight applications. Recent developments in additive manufacturing (AM) techniques facilitate the manufacturing of lattice metamaterials with intricate microarchitectures and promote their applications in multi-physical scenarios. Previous reviews on lattice metamaterials have largely focused on a specific/single physical field, with limited discussion on their multi-physical properties, interaction mechanisms, and multifunctional applications.
View Article and Find Full Text PDFQ J Exp Psychol (Hove)
January 2025
Department of Otorhinolaryngology / Head and Neck Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
This study aims to provide a comprehensive picture of auditory emotion perception in cochlear implant (CI) users by (1) investigating emotion categorization in both vocal (pseud-ospeech) and musical domains, and (2) how individual differences in residual acoustic hearing, sensitivity to voice cues (voice pitch, vocal tract length), and quality of life (QoL) might be associated with vocal emotion perception, and, going a step further, also with musical emotion perception. In 28 adult CI users, with or without self-reported acoustic hearing, we showed that sensitivity (d') scores for emotion categorization varied largely across the participants, in line with previous research. However, within participants, the d' scores for vocal and musical emotion categorization were significantly correlated, indicating similar processing of auditory emotional cues across the pseudo-speech and music domains and robustness of the tests.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!