Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in the elderly population. Variants in the HTRA1-ARMS2 locus have been linked to increased AMD risk. In the present study we investigated the impact of elevated HtrA1 levels on the retina pigment epithelial (RPE) secretome using a polarized culture system. Upregulation of HtrA1 alters the abundance of key proteins involved in angiogenesis and extracellular matrix remodeling. Thrombospondin-1, an angiogenesis modulator, was identified as a substrate for HtrA1 using terminal amine isotope labeling of substrates in conjunction with HtrA1 specificity profiling. HtrA1 cleavage of thrombospondin-1 was further corroborated by in vitro cleavage assays and targeted proteomics together with small molecule inhibition of HtrA1. While thrombospondin-1 is anti-angiogenic, the proteolytically released N-terminal fragment promotes the formation of tube-like structure by endothelial cells. Taken together, our findings suggest a mechanism by which increased levels of HtrA1 may contribute to AMD pathogenesis. The proteomic data has been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier. For quantitative secretome analysis, project accession: PXD007691, username: reviewer45093@ebi.ac.uk, password: 1FUpS6Yq. For TAILS analysis, project accession: PXD007139, username: reviewer76731@ebi.ac.uk, password: sNbMp7xK.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.matbio.2018.03.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!