In the present study novel polypyrrole-cellulose-graphene oxide nanocomposite (PCeGONC) was employed for the immobilization of ginger peroxidase (GP) via simple adsorption mechanism. Immobilization of enzyme on the obtained support resulted in enhancement of the enzyme activity. The recovery of activity was 128% of the initial activity. Consequently, in 3 h stirred batch treatment, PCeGONC bound GP exhibited higher decolorization efficiency (99%) for Reactive Blue 4 (RB 4) dye as compared to free GP (88%). The immobilized GP exhibited higher operational stability and retained approximately 72% of its initial activity even after ten sequential cycles of dye decolorization in batch process. The kinetic characterization of PCeGONC bound GP revealed slightly lower K and 3.3 times higher V compared to free GP. Degraded products were identified on the basis of GC-MS analysis and degradation pathway was proposed accordingly which confirms enzymatic breakdown of RB 4 into low molecular weight compounds. Genotoxic assessment of GP treated RB 4 revealed significant reduction of its genotoxic potential. In-silico analysis identified that binding site of PCeGONC on enzyme is distinct and lies far away from the active site of the enzyme. Furthermore, it also revealed higher affinity of 1-hydroxybenzotriazole (a redox mediator) and RB 4 for PCeGONC bound enzyme as compared to the free enzyme. This is in consensus with the observed decrease in K of the immobilized GP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2018.03.073DOI Listing

Publication Analysis

Top Keywords

pcegonc bound
12
compared free
12
polypyrrole-cellulose-graphene oxide
8
oxide nanocomposite
8
reactive blue
8
blue dye
8
initial activity
8
exhibited higher
8
enzyme
6
pcegonc
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!