Electronic and electrical equipment contains over 1000 different substances, including metals. During informal e-waste recycling some of these substances such as metals, are released into the environment causing environmental pollution. This study assessed the impact of different informal e-waste recycling activities (burning, dismantling, and repairing) on metal concentrations in top soils and various dust. A comparative cross-sectional study design was adopted to assess metal concentrations in top soils and in various dust samples from multiple e-waste recycling sites. Metal concentrations at e-waste recycling sites were compared to the concentrations at control sites in three study locations in Nigeria (Lagos, Ibadan, and Aba). In the three study locations, mean metal concentrations at the e-waste recycling sites exceeded the concentrations at the control sites and the Nigerian standard guideline values by 100 s to 1000 s times. Burning sites showed the highest pollution level, followed by dismantling sites, then repair sites. Our findings show serious environmental and public health concerns. The metal concentrations were also higher than levels reported in other studies at the same locations in Nigeria, indicating that the situation is worsening. This study provides scientific evidence for an urgent need to develop effective strategies to strengthen enforcement of existing e-waste regulations in Nigeria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2018.03.002 | DOI Listing |
Biol Trace Elem Res
January 2025
Department of Environmental Management and Toxicology, Federal University of Agriculture, PMB 2240, Abeokuta, Ogun State, Nigeria.
Fish is a significant source of animal protein for humans; however, it has a tendency to bioaccumulate toxicants from the environment. The present study assessed the health risks associated with potential toxic metals (PTMs) in differently processed catfish (Clarias gariepinus) from four markets in Abeokuta metropolis, southwestern Nigeria. A total of 60 samples were collected and analyzed for PTMs using an Atomic Absorption Spectrophotometer.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Civil Engineering, National Institute of Technology Andhra Pradesh, Tadepalligudem, India.
Plastics are widely used across various applications from packing to commercial products. Once discarded, they were subjected to environmental stresses, causing them to degrade into microplastics (MPs). These small, invisible pollutants pose a significant threat to aquatic ecosystems, gradually compromising the resilience and vitality of the natural environment.
View Article and Find Full Text PDFBull Environ Contam Toxicol
January 2025
Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information·Technology, Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing, Jiangsu, 210019, China.
The widespread concern over nanoplastics (NPs) has prompted extensive research into their environmental impact. Concurrently, the study examined the combined toxicity of PS NPs and cadmium (Cd) on wheat. As indicated by the results of in situ Micro-ATR/FTIR, the aging process of PS NPs (50 nm) led to an increase in carbonyl and hydroxyl groups on their surface, enhancing hydrophilicity and consequently, the adsorption capacity for Cd.
View Article and Find Full Text PDFBiometals
January 2025
School of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
Bone mineral density (BMD) measured by T-score is strongly associated with bone health, but research on its association with metals in humans body remains limited. To investigate the relationship between metal exposure and BMD, numbers of 159 participants in eastern China were studied. Urine and blood samples were collected and levels of 20 metals in the samples were measured using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS).
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India.
Catharanthus roseus is a medicinal plant widely known for producing monoterpenoid indole alkaloids (MIAs), including therapeutic compounds such as vinblastine and vincristine, which are crucial for cancer treatment. However, the naturally low concentration of these alkaloids in plant tissues poses a significant challenge for large-scale production. This study explores the application of siderophore-producing bacteria for seed bacterization of Catharanthus roseus to enhance the production of MIAs, including vindoline, catharanthine, and vinblastine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!