Background: Orthopedic braces made by Computer-Aided Design and Manufacturing and numerical simulation were shown to improve spinal deformities correction in adolescent idiopathic scoliosis while using less material. Simulations with BraceSim (Rodin4D, Groupe Lagarrigue, Bordeaux, France) require a sagittal radiograph, not always available. The objective was to develop an innovative modeling method based on a single coronal radiograph and surface topography, and assess the effectiveness of braces designed with this approach.
Methods: With a patient coronal radiograph and a surface topography, the developed method allowed the 3D reconstruction of the spine, rib cage and pelvis using geometric models from a database and a free form deformation technique. The resulting 3D reconstruction converted into a finite element model was used to design and simulate the correction of a brace. The developed method was tested with data from ten scoliosis cases. The simulated correction was compared to analogous simulations performed with a 3D reconstruction built using two radiographs and surface topography (validated gold standard reference).
Findings: There was an average difference of 1.4°/1.7° for the thoracic/lumbar Cobb angle, and 2.6°/5.5° for the kyphosis/lordosis between the developed reconstruction method and the reference. The average difference of the simulated correction was 2.8°/2.4° for the thoracic/lumbar Cobb angles and 3.5°/5.4° the kyphosis/lordosis.
Interpretation: This study showed the feasibility to design and simulate brace corrections based on a new modeling method with a single coronal radiograph and surface topography. This innovative method could be used to improve brace designs, at a lesser radiation dose for the patient.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clinbiomech.2018.03.005 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
Sustainable pavement is essential for country development, offering durable, environmentally friendly, and cost-effective infrastructure. For Malaysia, sustainable pavement supports Sustainable Development Goals (SDGs) 9 and 11 while addressing road deterioration caused by increasing traffic volumes and loads. This deterioration shortens pavement service life and necessitates frequent maintenance, driving the need for innovative solutions.
View Article and Find Full Text PDFHeliyon
November 2024
Faculty of Physics, Shahrood University of Technology, 3619995161, Shahrood, Iran.
This study evaluates the deposition of diamond-like carbon (DLC) films with copper impurities on a glass substrate using simultaneous direct current (DC) and radio frequency (RF) magnetron sputtering. The structural, optical, electrical, and mechanical properties, as well as the surface topography of the films, were investigated under various DC power levels using Raman spectroscopy, ellipsometry, UV-VIS, I-V measurements, nanoindentation, AFM, and FESEM. Results indicate that increasing the DC power to the graphite target from 60 to 120 , while maintaining a constant 10 of RF power to the copper target, enhances the optical absorption coefficient of the films and increases the optical bandgap from 0.
View Article and Find Full Text PDFTurk J Orthod
December 2024
Çanakkale Onsekiz Mart University Faculty of Dentistry, Department of Orthodontics, Çanakkale, Turkey.
Objective: This study aimed to compare the manufacturing accuracy of different printing techniques - Stereolithography (SLA), Digital Light Processing (DLP), and PolyJet-using digital dental models.
Methods: The study included cast models of 30 patients aged between 12 and 20 years. The selected models were scanned using an intraoral scanner, and surface topography format files were obtained.
Subcell Biochem
December 2024
Department of Physics of the Condensed Matter, C03 and IFIMAC (Instituto de Física de la Materia Condensada). Universidad Autónoma de Madrid, Madrid, Spain.
Atomic force microscopy (AFM) makes it possible to obtain images at nanometric resolution, and to accomplish the manipulation and physical characterization of specimens, including the determination of their mechanical and electrostatic properties. AFM has an ample range of applications, from materials science to biology. The specimen, supported on a solid surface, can be imaged and manipulated while working in air, ultra-high vacuum or, most importantly for virus studies, in liquid.
View Article and Find Full Text PDFJACS Au
December 2024
Department of Materials Design Innovation Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Aichi, Japan.
Controlling the nucleation, growth, and dissolution of Li is crucial for the high cycling stability in rechargeable Li metal batteries. The overpotential for Li nucleation (η) on Li alloys such as Li-Au is generally lower than that on metal current collectors (CCs) with very limited Li solubility like Cu. However, the alloying process of CC and its impact on the Li nucleation kinetics remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!