For both fundamental study of biological processes and early diagnosis of diseases, information about nanoscale changes in tissue and cell structure is crucial. Nowadays, almost all currently known nanoscopy methods rely upon the contrast created by fluorescent stains attached to the object or molecule of interest. This causes limitations due to the impact of the label on the object and its environment, as well as its applicability in vivo, particularly in humans. In this paper, a new label-free approach to visualize small structure with nano-sensitivity to structural alterations is introduced. Numerically synthesized profiles of the axial spatial frequencies are used to probe the structure within areas whose size can be beyond the diffraction resolution limit. Thereafter, nanoscale structural alterations within such areas can be visualized and objects, including biological ones, can be investigated with sub-wavelength resolution, in vivo, in their natural environment. Some preliminary results, including numerical simulations and experiments, which demonstrate the nano-sensitivity and super-resolution ability of our approach, are presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbio.201700385 | DOI Listing |
Nanomaterials (Basel)
January 2025
Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland.
In situ X-ray reciprocal space mapping was performed during the interval heating and cooling of InGaN/GaN quantum wells (QWs) grown via metal-organic vapor phase epitaxy (MOVPE). Our detailed in situ X-ray analysis enabled us to track changes in the peak intensities and radial and angular broadenings of the reflection. By simulating the radial diffraction profiles recorded during the thermal cycle treatment, we demonstrate the presence of indium concentration distributions (ICDs) in the different QWs of the heterostructure (1.
View Article and Find Full Text PDFMicron
January 2025
CEMES-CNRS, 29 Rue Jeanne Marvig, Toulouse 31055, France.
Owing to its high spatial resolution and its high sensitivity to chemical element detection, transmission electron microscopy (TEM) technique enables to address high-level materials characterization of advanced technologies in the microelectronics field. TEM instruments fitted with various techniques are well-suited for assessing the local structural and chemical order of specific details. Among these techniques, 4D-STEM is suitable to estimate the strain distribution of a large field of view.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Mechanical Engineering, University of California at Riverside, Riverside, California 92521, United States.
Sensing light's polarization and wavefront direction enables surface curvature assessment, material identification, shadow differentiation, and improved image quality in turbid environments. Traditional polarization cameras utilize multiple sensor measurements per pixel and polarization-filtering optics, which result in reduced image resolution. We propose a nanophotonic pipeline that enables compressive sensing and reduces the sampling requirements with a low-refractive-index, self-assembled optical encoder.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
PbZrTiO cubes with tunable sizes and cuboids have been hydrothermally synthesized. PbZrTiO cubes with three different Zr : Ti atomic percentages were also prepared. Analysis of synchrotron X-ray diffraction (XRD) patterns reveals the presence of two lattice components for these samples.
View Article and Find Full Text PDFJ Biomed Opt
January 2025
Tsinghua University, State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Beijing, China.
Significance: Optical coherence tomography (OCT) is widely utilized to investigate brain activities and disorders in anesthetized or restrained rodents. However, anesthesia can alter several physiological parameters, leading to findings that might not fully represent the true physiological state. To advance the understanding of brain function in awake and freely moving animals, the development of wearable OCT probes is crucial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!