FeMn alloys show a great potential for the use as a biodegradable material for medical vascular implants. To optimize the material properties, with respect to the intended application, new fabrication methods also have to be investigated. In this work different Fe-FeMn32 multilayer films were deposited by magnetron sputtering. The deposition was done on a substrate structured by UV lithography. This technique allows the fabrication of in-situ structured foils. In order to investigate the influence of the Mn content on the material properties foils with an overall Mn content of 5, 10, 15, and 17 wt % were fabricated. The freestanding foils were annealed post-deposition, in order to homogenize them and adjust the material properties. The material was characterized in terms of microstructure, corrosion, mechanical, and magnetic properties using X-ray diffraction, electron microscopy, electrochemical polarization, immersion tests, uniaxial tensile tests, and vibrating sample magnetometry. Due to the unique microstructure that can be achieved by the fabrication via magnetron sputtering, the annealed foils showed a high mechanical yield strength (686-926 MPa) and tensile strength (712-1147 MPa). Owing the stabilization of the non-ferromagnetic ε- and γ-phase, it was shown that even Mn concentrations of 15-17 wt % are sufficient to distinctly enhance the magnetic resonance imaging (MRI) compatibility of FeMn alloys.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5951328 | PMC |
http://dx.doi.org/10.3390/ma11040482 | DOI Listing |
Phys Chem Chem Phys
January 2025
State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Mechanoresponsive colloidal photonic crystals embedded in elastic solid matrices exhibit tunable optical properties under mechanical force, showing great potential for various applications. However, the response of colloidal crystals embedded in a liquid matrix remains largely unexplored. In this study, we investigate the structural and optical transitions of colloidal crystals composed of particles suspended in a liquid oligomer under pressing and shear forces.
View Article and Find Full Text PDFDalton Trans
January 2025
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China.
Five alkali metal manganese(III) fluorophosphates, KMn(POF)F (I), RbMn(POF)F (II), RbMn(POF)(PO)F (III), RbMn(POF)(PO)F (IV), and CsMn(POF)F (V), were successfully synthesized using a hydrothermal method. The monofluorophosphate anion (POF) groups work as "chemical scissors" to promote low-dimensional spin structures with the aid of alkali metal cations. I and II had an = 2 uniform chain structure formed by corner-sharing -MnOF octahedra.
View Article and Find Full Text PDFChemphyschem
January 2025
Western University, Chemistry, 1151 Richmond St, N6A5B7, London, CANADA.
Graphene quantum dots (GQDs) have emerged as promising materials for electrochemiluminescence (ECL) applications due to their unique optical and electronic properties. In this study, GQDs were synthesized via electrochemical exfoliation of graphite in a constant current density mode, enabling scalable production with controlled size and surface functionalization. GQDs-4 and GQDs-20, synthesized at applied current densities of 4 mA/cm2 and 20 mA/cm2 to the graphite electrode, respectively, were investigated on roles of surface states and exciplex dominated aggregation-induced emission (AIE) in their ECL performance.
View Article and Find Full Text PDFNanomicro Lett
January 2025
College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, Shanghai, 200092, People's Republic of China.
Fluorinated gases (F-gases) play a vital role in the chemical industry and in the fields of air conditioning, refrigeration, health care, and organic synthesis. However, the direct emission of waste gases containing F-gases into the atmosphere contributes to greenhouse effects and generates toxic substances. Developing porous materials for the energy-efficient capture, separation, and recovery of F-gases is highly desired.
View Article and Find Full Text PDFJ Mater Sci Mater Med
January 2025
Department of Nuclear Medicine, Chongqing University Cancer Hospital, No. 181 HanYu St, Shapingba District, Chongqing, 400030, PR China.
Human hair keratin, a natural protein derived from human hair, has emerged prominently in the field of wound repair, showcasing its unique regenerative capabilities and extensive application potential. However, it is a challenge for the keratin to efficiently therapy the impaired wound healing, such as combined radiation-wound injury. Here, we report a keratin/chitosan (KRT/CS) film for skin repair of chronic wounds in in rats with combined radiation-wound injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!