Transcriptomic and GC-MS Metabolomic Analyses Reveal the Sink Strength Changes during Petunia Anther Development.

Int J Mol Sci

Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.

Published: March 2018

, which has been prevalently cultivated in landscaping, is a dicotyledonous herbaceous flower of high ornamental value. Annually, there is a massive worldwide market demand for petunia seeds. The normal development of anther is the necessary prerequisite for the plants to generate seeds. However, the knowledge of petunia anther development processes is still limited. To better understand the mechanisms of petunia anther development, the transcriptomes and metabolomes of petunia anthers at three typical development stages were constructed and then used to detect the gene expression patterns and primary metabolite profiles during the anther development processes. Results suggested that there were many differentially-expressed genes (DEGs) that mainly participated in photosynthesis and starch and sucrose metabolism when DEGs were compared between the different development stages of anthers. In this study, fructose and glucose, which were involved in starch and sucrose metabolism, were taken as the most important metabolites by partial least-squares discriminate analysis (PLS-DA). Additionally, the qRT-PCR analysis of the photosynthetic-related genes all showed decreased expression trends along with the anther development. These pieces of evidence indicated that the activities of energy and carbohydrate metabolic pathways were gradually reduced during all the development stages of anther, which affects the sink strength. Overall, this work provides a novel and comprehensive understanding of the metabolic processes in petunia anthers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5979359PMC
http://dx.doi.org/10.3390/ijms19040955DOI Listing

Publication Analysis

Top Keywords

anther development
20
petunia anther
12
development stages
12
development
9
sink strength
8
development processes
8
petunia anthers
8
starch sucrose
8
sucrose metabolism
8
anther
7

Similar Publications

Heat stress poses a significant challenge for maize production, especially during the spring when high temperatures disrupt cellular processes, impeding plant growth and development. The B-cell lymphoma-2 (Bcl-2) associated athanogene (BAG) gene family is known to be relatively conserved across various species. It plays a crucial role as molecular chaperone cofactors that are responsible for programmed cell death and tumorigenesis.

View Article and Find Full Text PDF

CRISPR/Cas9-mediated knockout of GhAMS11 and GhMS188 reveals key roles in tapetal development and pollen exine formation in upland cotton.

Int J Biol Macromol

December 2024

National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China. Electronic address:

The ABORTED MICROSPORES (AMS) gene is crucial for tapetal cell development and pollen formation, but its role in Upland cotton (Gossypium hirsutum) has not been previously documented. This study identified GhAMS11 as a key transcription factor, with its high expression specifically observed during the S4-S6 stages of anther development, a critical period for tapetal activity and pollen formation. Subcellular localization confirmed that GhAMS11 was located in the nucleus.

View Article and Find Full Text PDF

Alfalfa ( L.), a prominent perennial forage in the legume family, is widely cultivated across Europe and America. Given its substantial economic value for livestock, breeding efforts have focused on developing high-yield and high-quality varieties since the discovery of CMS lines.

View Article and Find Full Text PDF

Plastid-localized ZmENR1/ZmHAD1 complex ensures maize pollen and anther development through regulating lipid and ROS metabolism.

Nat Commun

December 2024

Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.

Lipid metabolism is critical for male reproduction in plants. Many lipid-metabolic genic male-sterility (GMS) genes function in the anther tapetal endoplasmic reticulum, while little is known about GMS genes involved in de novo fatty acid biosynthesis in the anther tapetal plastid. In this study, we identify a maize male-sterile mutant, enr1, with early tapetal degradation, defective anther cuticle, and pollen exine.

View Article and Find Full Text PDF

Phosphorus (P) is an essential macronutrient for the growth and yield of crops. However, there is limited understanding of the regulatory mechanisms of phosphate (Pi) homeostasis, and its impact on growth, development, and yield-related traits in Brassica napus. Here, we identified four NITROGEN LIMITATION ADAPATATION1 (BnaNLA1) genes in B.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!