Due to synergistic effects, combinatorial drugs are widely used for treating complex diseases. However, combining drugs and making them synergetic remains a challenge. Genetic disease genes are considered a promising source of drug targets with important implications for navigating the drug space. Most diseases are not caused by a single pathogenic factor, but by multiple disease genes, in particular, interacting disease genes. Thus, it is reasonable to consider that targeting epistatic disease genes may enhance the therapeutic effects of combinatorial drugs. In this study, synthetic lethality gene pairs of tumors, similar to epistatic disease genes, were first targeted by combinatorial drugs, resulting in the enrichment of the combinatorial drugs with cancer treatment, which verified our hypothesis. Then, conventional epistasis detection software was used to identify epistatic disease genes from the genome wide association studies (GWAS) dataset. Furthermore, combinatorial drugs were predicted by targeting these epistatic disease genes, and five combinations were proven to have synergistic anti-cancer effects on MCF-7 cells through cell cytotoxicity assay. Combined with the three-dimensional (3D) genome-based method, the epistatic disease genes were filtered and were more closely related to disease. By targeting the filtered gene pairs, the efficiency of combinatorial drug discovery has been further improved.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017788PMC
http://dx.doi.org/10.3390/molecules23040736DOI Listing

Publication Analysis

Top Keywords

disease genes
36
epistatic disease
24
combinatorial drugs
20
targeting epistatic
12
disease
10
genes
9
combinatorial drug
8
drug discovery
8
effects combinatorial
8
gene pairs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!