Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An interferometric optical setup for diffraction-less spectroscopy is tested as an optical design for control of interference frequency. Its design is based on a Mach-Zehnder interferometer in which a pair of compound prisms is introduced in the interferometer path to obtain interference patterns, which avoids the diffraction phenomena and nonlinear dispersion found on spectrometers that use gratings. Computer simulations of the interference patterns generated by the proposed optical setup are presented, and confirmed by the experimental results of the optical implementation. The theory that describes an ideal optical setup and the experimental results show that in order to reduce the combined uncertainties of wavelength measurement, a precise control in angle deviation and magnification are required for the reduction of measurement uncertainties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0003702818763820 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!