The encapsulation of the gemcitabine anticancer drug into grapheme nest: a theoretical study.

J Mol Model

Laboratoire de Nanomédecine, Imagerie et Thérapeutique, Université Franche-Comté (UFR Sciences et Techniques), Centre Hospitalier Universitaire de Besançon, 16 route de Gray, 25030, Besançon, France.

Published: March 2018

The efficient transport of a drug molecule until its target cell constitutes a significant challenge for delivery processes. To achieve such objectives, solid nanocapsules that protect the immune system during the transport should be developed and controlled at the nanoscale level. From this point of view, nanostructures based on graphene sheets could present some promising properties due to their ultimate size and dimension. In this work, we present theoretical results using DFT calculations, dealing with a graphene-based delivery system. Indeed, we demonstrate the stability of the gemcitabine anticancer molecule when it is encapsulated into two concave graphene sheets organized as a nest. Quantum calculations showed that the most stable state is located inside the nest, which is then formed by two layers distanced 6 Å from each other. For all the optimized systems, we focused on the dependence of the interaction energy on the molecule displacements during its entrance in the graphene nest and its exit from it. We also analyzed their consequence on the local morphological and electronic charge properties. Graphical Abstract Adsorption energy (in eV) of gemcitabine drug during its encapsulation inside the nest of grapheneand its release from it.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-018-3627-6DOI Listing

Publication Analysis

Top Keywords

gemcitabine anticancer
8
graphene sheets
8
inside nest
8
nest
5
encapsulation gemcitabine
4
anticancer drug
4
drug grapheme
4
grapheme nest
4
nest theoretical
4
theoretical study
4

Similar Publications

The biological and thermal properties of a class of synthetic dihydroimidazotriazinones were disclosed in this article for the first time. Molecules --as potential innovative antimetabolites mimicking bicyclic aza-analogues of isocytosine-were evaluated for their in vitro anticancer activity. Moreover, in vivo, in vitro, and ex vivo toxicity profiles of all the compounds were established in zebrafish, non-tumour cell, and erythrocyte models, respectively.

View Article and Find Full Text PDF

Gemcitabine (GEM) is a first line chemotherapy drug for bladder cancer (BCa). GEM's lack of specificity has led to disadvantages, resulting in low efficiency, especially when combined with the targeted treatment of BCa stem cells (CSCs), which is considered the cause of BCa recurrence and progression. To enhance the anti-cancer effect and reduce the side effects of GEM targeting of BCa cells/CSCs, an aptamer drug conjugate (ApDC) targeted delivery system was used to improve the efficiency of GEM in BCa therapy using EpCAM aptamer-GEM conjugates based on the epithelial cell adhesion molecule (EpCAM), which is highly expressed on the cell membrane of BCa cells/CSCs.

View Article and Find Full Text PDF

The synthesis of degradable polymer prodrug nanoparticles is still a challenge to be met, which would make it possible to remedy both the shortcomings of traditional formulation of preformed polymers (, low nanoparticle concentrations) and those of the physical encapsulation of drugs (, burst release and poor drug loadings). Herein, through the combination of radical ring-opening polymerization (rROP) and polymerization-induced self-assembly (PISA) under appropriate experimental conditions, we report the successful preparation of high-solid content, degradable polymer prodrug nanoparticles, exhibiting multiple drug moieties covalently linked to a degradable vinyl copolymer backbone. Such a rROPISA process relied on the chain extension of a biocompatible poly(ethylene glycol)-based solvophilic block with a mixture of lauryl methacrylate (LMA), cyclic ketene acetal (CKA) and drug-bearing methacrylic esters by reversible addition fragmentation chain transfer (RAFT) copolymerization at 20 wt% solid content.

View Article and Find Full Text PDF

The development of stable and standardized in vitro cytotoxicity testing models is essential for drug discovery and personalized medicine. Microfluidic technologies, recognized for their small size, reduced reagent consumption, and control over experimental variables, have gained considerable attention. However, challenges associated with external pumps, particularly inconsistencies between individual pumping systems, have limited the real-world application of cancer-on-a-chip technology.

View Article and Find Full Text PDF

Malignant biliary obstruction presents a significant therapeutic challenge and has serious consequences including cholangitis and death. Clinically, biliary stenting using self-expanding metallic- stent(SEMS) relieves this obstruction. However, stent occlusion occurs with time due to tumor/epithelial in-growth and bacterial colonization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!