Translating New Science Into the Drug Review Process: The US FDA's Division of Applied Regulatory Science.

Ther Innov Regul Sci

Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA.

Published: March 2018

In 2011, the US Food and drug Administration (FDA) developed a strategic plan for regulatory science that focuses on developing new tools, standards, and approaches to assess the safety, efficacy, quality, and performance of FDA-regulated products. In line with this, the Division of Applied Regulatory Science was created to move new science into the Center for Drug Evaluation and Research (CDER) review process and close the gap between scientific innovation and drug review. The Division, located in the Office of Clinical Pharmacology, is unique in that it performs mission-critical applied research and review across the translational research spectrum including in vitro and in vivo laboratory research, in silico computational modeling and informatics, and integrated clinical research covering clinical pharmacology, experimental medicine, and postmarket analyses. The Division collaborates with Offices throughout CDER, across the FDA, other government agencies, academia, and industry. The Division is able to rapidly form interdisciplinary teams of pharmacologists, biologists, chemists, computational scientists, and clinicians to respond to challenging regulatory questions for specific review issues and for longer-range projects requiring the development of predictive models, tools, and biomarkers to speed the development and regulatory evaluation of safe and effective drugs. This article reviews the Division's recent work and future directions, highlighting development and validation of biomarkers; novel humanized animal models; translational predictive safety combining in vitro, in silico, and in vivo clinical biomarkers; chemical and biomedical informatics tools for safety predictions; novel approaches to speed the development of complex generic drugs, biosimilars, and antibiotics; and precision medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5844453PMC
http://dx.doi.org/10.1177/2168479017720249DOI Listing

Publication Analysis

Top Keywords

regulatory science
12
drug review
8
review process
8
division applied
8
applied regulatory
8
clinical pharmacology
8
speed development
8
review
5
division
5
regulatory
5

Similar Publications

Protein Phosphatase 2A B'α and B'β promote pollen wall construction partially through BZR1-activated CEP1 in Arabidopsis.

J Exp Bot

January 2025

Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.

A well-constructed pollen wall is essential for pollen fertility, which relies on the contribution of tapetum. Our results demonstrate an essential role of the tapetum-expressed protein phosphatase 2A (PP2A) B'α and B'β in pollen wall formation. The b'aβ double mutant pollen grains harbored sticky remnants and tectum breakages, resulting in failed release.

View Article and Find Full Text PDF

Influence of Ageing on the Pharmacodynamics and Pharmacokinetics of Chronically Administered Medicines in Geriatric Patients: A Review.

Clin Pharmacokinet

January 2025

Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.

As people age, the efficiency of various regulatory processes that ensure proper communication between cells and organs tends to decline. This deterioration can lead to difficulties in maintaining homeostasis during physiological stress. This includes but is not limited to cognitive impairments, functional difficulties, and issues related to caregivers which contribute significantly to medication errors and non-adherence.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma (ccRCC) is a highly malignant tumor characterized by a significant propensity for recurrence and metastasis. DNA methylation has emerged as a critical epigenetic mechanism with substantial utility in cancer diagnosis. In this study, multi-omics data were utilized to investigate the target genes regulated by the transcription factor MYC-associated zinc finger protein (MAZ) in ccRCC, leading to the identification of thymidine phosphorylase (TYMP) as a gene with notably elevated expression in ccRCC.

View Article and Find Full Text PDF

Purpose: The first 1000 days of life are critical for long-term health outcomes, and there is increasing concern about the suitability of commercial food products for infants, toddlers, and children. This study evaluates the compliance of UK commercial baby food products with WHO Nutrient and Promotion Profile Model (NPPM) guidelines.

Methods: Between February and April 2023, data on 469 baby food products marketed for infants and children under 36 months were collected from the online platforms of four major UK supermarkets.

View Article and Find Full Text PDF

Although C2H2 zinc finger transcription factors are important in plant growth, development, and stress resistance, their specific roles in fruit ripening have been less explored. Here, we demonstrate that the C2H2 zinc finger transcription factor 5 (SlZAT5) regulates fruit ripening in tomato (Solanum lycopersicum L.).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!