Photosensitive disorders in HIV.

South Afr J HIV Med

Wits University Donald Gordon Medical Centre, Johannesburg, South Africa.

Published: August 2017

Photosensitive disorders are common, affecting up to 5% of HIV-positive patients. HIV itself induces photosensitivity but photoaggravated drug reactions, porphyria cutanea tarda and nutritional disorders such as pellagra are also more common in patients with HIV. In South Africa, actinic lichenoid leukomelanoderma of HIV is a unique photosensitive disorder which is associated with advanced HIV. It is important to be able to recognise these conditions and withdraw photosensitising medications wherever possible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842981PMC
http://dx.doi.org/10.4102/sajhivmed.v18i1.676DOI Listing

Publication Analysis

Top Keywords

photosensitive disorders
8
patients hiv
8
hiv
5
disorders hiv
4
hiv photosensitive
4
disorders common
4
common hiv-positive
4
hiv-positive patients
4
hiv induces
4
induces photosensitivity
4

Similar Publications

The intricate morphology, physicochemical properties, and interacting proteins of lipid droplets (LDs) are associated with cell metabolism and related diseases. To uncover these layers of information, a solvatochromic and photosensitized LDs-targeted probe based on the furan-based D-D-π-A scaffold is developed to offer the following integrated functions. First, the turn-on fluorescence of the probe upon selectively binding to LDs allows for direct visualization of their location and morphology.

View Article and Find Full Text PDF

Effects of light on biological functions and human sleep.

Handb Clin Neurol

January 2025

Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland.

The nonvisual effects of light in humans are mainly conveyed by a subset of retinal ganglion cells that contain the pigment melanopsin which renders them intrinsically photosensitive (= intrinsically photosensitive retinal ganglion cells, ipRGCs). They have direct connections to the main circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus and modulate a variety of physiological processes, pineal melatonin secretion, autonomic functions, cognitive processes such as attention, and behavior, including sleep and wakefulness. This is because efferent projections from the SCN reach other hypothalamic nuclei, the pineal gland, thalamus, basal forebrain, and the brainstem.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) involves the topical application of a photosensitizer and its activation by visible light, leading to the generation of protoporphyrin IX (PpIX) and reactive oxygen species. Daylight photodynamic therapy (dPDT), a variant utilizing natural sunlight as the energy source, enhances procedural flexibility by eliminating the need for specialized equipment. dPDT has been effectively used in dermatology to treat various cutaneous disorders, including neoplastic and infectious diseases.

View Article and Find Full Text PDF

Nutraceuticals are not regulated by the US Food and Drug Administration, so a careful literature review is essential to make clinical decisions. Riboflavin or vitamin B2 can be recommended for migraine prevention in adults, but pediatric use is not proven. Adverse events are minimal.

View Article and Find Full Text PDF

Enhancing Photodynamic Therapy Efficacy via Photo-Triggered Calcium Overload and Oxygen Delivery in Tumor Hypoxia Management.

ACS Appl Mater Interfaces

January 2025

Department of Ultrasound, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400010, China.

: Photodynamic therapy (PDT) has emerged as a promising treatment for cancer, primarily due to its ability to generate reactive oxygen species (ROS) that directly induce tumor cell death. However, the hypoxic microenvironment commonly found within tumors poses a significant challenge by inhibiting ROS production. This study aims to investigate the effect of improving tumor hypoxia on enhancing PDT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!