A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Lose-Shift Responding in Humans Is Promoted by Increased Cognitive Load. | LitMetric

Lose-Shift Responding in Humans Is Promoted by Increased Cognitive Load.

Front Integr Neurosci

Canadian Centre for Behavioral Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.

Published: March 2018

The propensity of animals to shift choices immediately after unexpectedly poor reinforcement outcomes is a pervasive strategy across species and tasks. We report here on the memory supporting such lose-shift responding in humans, assessed using a binary choice task in which random responding is the optimal strategy. Participants exhibited little lose-shift responding when fully attending to the task, but this increased by 30%-40% in participants that performed with additional cognitive load that is known to tax executive systems. Lose-shift responding in the cognitively loaded adults persisted throughout the testing session, despite being a sub-optimal strategy, but was less likely as the time increased between reinforcement and the subsequent choice. Furthermore, children (5-9 years old) without load performed similarly to the cognitively loaded adults. This effect disappeared in older children aged 11-13 years old. These data provide evidence supporting our hypothesis that lose-shift responding is a default and reflexive strategy in the mammalian brain, likely mediated by a decaying memory trace, and is normally suppressed by executive systems. Reducing the efficacy of executive control by cognitive load (adults) or underdevelopment (children) increases its prevalence. It may therefore be an important component to consider when interpreting choice data, and may serve as an objective behavioral assay of executive function in humans that is easy to measure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5852382PMC
http://dx.doi.org/10.3389/fnint.2018.00009DOI Listing

Publication Analysis

Top Keywords

lose-shift responding
20
cognitive load
12
responding humans
8
executive systems
8
cognitively loaded
8
loaded adults
8
lose-shift
5
responding
5
humans promoted
4
promoted increased
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!