Transcranial magnetic stimulation (TMS) applied over the primary motor cortex (M1), elicits motor-evoked potentials (MEPs) in contralateral limb muscles which are valuable indicators of corticospinal excitability (CSE) at the time of stimulation. So far, most studies have used single-coil TMS over one M1, yielding MEPs in muscles of a single limb-usually the hand. However, tracking CSE in the two hands simultaneously would be useful in many contexts. We recently showed that, in the resting state, double-coil stimulation of the two M1 with a 1 ms inter-pulse interval (double-coil TMS) elicits MEPs in both hands that are comparable to MEPs obtained using single-coil TMS. To further evaluate this new technique, we considered the MEPs elicited by double-coil TMS in an instructed-delay choice reaction time task where a prepared response has to be withheld until an imperative signal is displayed. Single-coil TMS studies have repetitively shown that in this type of task, the motor system is transiently inhibited during the delay period, as evident from the broad suppression of MEP amplitudes. Here, we aimed at investigating whether a comparable inhibitory effect can be observed with MEPs elicited using double-coil TMS. To do so, we compared the amplitude as well as the coefficient of variation (CV) of MEPs produced by double-coil or single-coil TMS during action preparation. We observed that MEPs were suppressed (smaller amplitude) and often less variable (smaller CV) during the delay period compared to baseline. Importantly, these effects were equivalent whether single-coil or double-coil TMS was used. This suggests that double-coil TMS is a reliable tool to assess CSE, not only when subjects are at rest, but also when they are involved in a task, opening new research horizons for scientists interested in the corticospinal correlates of human behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5852071 | PMC |
http://dx.doi.org/10.3389/fnins.2018.00139 | DOI Listing |
Neuroimage
June 2020
CoActions Lab, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
The motor system displays strong changes in neural activity during action preparation. In the past decades, several techniques, including transcranial magnetic stimulation (TMS), electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), have allowed us to gain insights into the functional role of such preparatory activity in humans. More recently, new TMS tools have been proposed to study the mechanistic principles underlying the changes in corticospinal excitability during action preparation.
View Article and Find Full Text PDFNeuropsychologia
June 2019
Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium; Laboratory for Experimental Psychopathology, Psychological Sciences Research Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.
By applying transcranial magnetic stimulation (TMS) over primary motor cortex (M1) to elicit motor-evoked potentials (MEPs) in muscles of the contralateral hand during reaction time (RT) tasks, many studies have reported a strong global suppression of motor excitability during action preparation, a phenomenon called preparatory inhibition. Several hypotheses have been put forward regarding the role of this broad suppression, with the predominant view that it reflects inhibitory processes assisting action selection. However, this assumption is still a matter of debate.
View Article and Find Full Text PDFNeurophysiol Clin
April 2019
Institute of Neuroscience, Université catholique de Louvain, 53, Avenue Mounier, COSY- B1.53.04, 1200 Brussels, Belgium.
Objectives: Motor-evoked potentials (MEPs) to transcranial magnetic stimulation (TMS) show a profound suppression when elicited during the instructed-delay of reaction time (RT) tasks. One predominant hypothesis is that this phenomenon, called "preparatory inhibition", reflects the operation of processes that suppress motor activity to withhold prepared (but delayed) responses, a form of impulse control. In addition, a startling acoustic stimulus (SAS) - a loud and narrow sound - can trigger the release of prepared responses in RT tasks.
View Article and Find Full Text PDFFront Neurosci
March 2018
Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
Transcranial magnetic stimulation (TMS) applied over the primary motor cortex (M1), elicits motor-evoked potentials (MEPs) in contralateral limb muscles which are valuable indicators of corticospinal excitability (CSE) at the time of stimulation. So far, most studies have used single-coil TMS over one M1, yielding MEPs in muscles of a single limb-usually the hand. However, tracking CSE in the two hands simultaneously would be useful in many contexts.
View Article and Find Full Text PDFNeurosci Biobehav Rev
March 2018
Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, 3220, Australia; Deakin Child Study Centre, School of Psychology, Deakin University, Geelong, Victoria, 3220, Australia.
The inhibitory tone that the cerebellum exerts on the primary motor cortex (M1) is known as cerebellar brain inhibition (CBI). Studies show CBI to be relevant to several motor functions, including adaptive motor learning and muscle control. CBI can be assessed noninvasively via transcranial magnetic stimulation (TMS) using a double-coil protocol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!