Downregulation of microRNA-21 inhibited radiation-resistance of esophageal squamous cell carcinoma.

Cancer Cell Int

Department of Radiation Oncology, School of Medicine, Sichuan Cancer Hospital & Institute, and Sichuan Cancer Center, University of Electronic Science and Technology of China, No. 55, 4th Section of Renmin South Road, Chengdu, 610041 Sichuan China.

Published: March 2018

Background: MicroRNA-21 (miR-21) was previously reported being dysregulated in many kinds of cancer including esophageal squamous cell carcinoma (ESCC). In the present study, we aimed to investigate the role of miR-21 in ESCC, especially in its effects on radiation-sensitivity of ESCC.

Methods: Expression of miR-21 was detected in 63 pairs ESCC tumor and adjacent non-tumoral tissues using qRT-PCR, correlation between miR-21 and clinicopathological feature of ESCC was analyzed. The role of miR-21 in the proliferation, cell cycle and apoptosis of ESCC cells during irradiation were studied.

Results: MicroRNA-21 expression was significantly increased in ESCC tumor tissues. Expression of miR-21 was positively associated with advanced clinical stage. Under irradiation, overexpression of miR-21 increased cell proliferation and cells in S phase, and inhibited cell apoptosis of ESCC cells. In contrast, knockdown of miR-21 had an opposite effect.

Conclusions: Downregulation of miR-21 inhibited the radiation-resistance of ESCC, whereas overexpression of miR-21 increased the radiation-resistance. MiR-21 is a potential novel target for developing specific treatment interventions in ESCC in future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5859534PMC
http://dx.doi.org/10.1186/s12935-018-0502-6DOI Listing

Publication Analysis

Top Keywords

mir-21
11
escc
9
inhibited radiation-resistance
8
esophageal squamous
8
squamous cell
8
cell carcinoma
8
role mir-21
8
expression mir-21
8
escc tumor
8
apoptosis escc
8

Similar Publications

The etiology of rheumatoid arthritis (RA) is multifaceted. One of the hypothesized pathways that results in the progression of RA is regulatory T cell (Treg) dysfunction. The pro-osteoclastogenic and immunogenic characteristics of microribonucleic acid (microRNA)-21 (miR-21) suggest its role in RA progression.

View Article and Find Full Text PDF

LncRNA432-miR-21-y-DAPK2 ceRNA crosstalk regulates antibacterial response in hypoxia stress through mediating mitochondrial apoptosis in teleost fish.

Int J Biol Macromol

January 2025

College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China. Electronic address:

As cold-blooded vertebrates, fish are sensitive to environmental changes. The outcome of pathogen infections in fish therefore is highly shaped by hypoxia. The epigenetic regulation of competitive endogenous RNA (ceRNA) bridging non-coding RNAs and mRNAs represents a promising mechanism modulating antibacterial response plus environmental stress.

View Article and Find Full Text PDF

Evaluation of Plasma microRNA-222 as a Biomarker for Gastric Cancer.

J Clin Med

December 2024

Department of Surgery, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura 285-8741, Chiba, Japan.

The dysregulation of microRNAs (miRNAs) has been detected in patients with gastric cancer (GC), which inspired the use of miRNAs as a novel biomarker for GC. In this study, we investigated the previously reported miRNA dysfunction in cancer tissues as a potential plasma biomarker for GC using quantitative reverse transcriptase polymerase chain reaction (RT-PCR). The published miRNA abnormalities were searched in the microRNA Cancer Association Database.

View Article and Find Full Text PDF

Esophageal carcinoma is a highly prevalent malignancy worldwide. The present study aimed to investigate the mechanism by which the natural compound coptisine affects pyroptosis in esophageal squamous cell carcinoma (ESCC). The expression of c-Met in ESCC patients was assessed by immunohistochemical analysis of tissue microarrays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!