Introduction: The safety and efficacy of using artificial collagen nerve conduits filled with collagen filaments to treat nerve defects has not been fully studied in humans. We conducted a multicenter, controlled, open-label study to compare the safety and efficacy of artificial nerve conduit grafts with those of autologous nerve grafts.
Methods: We included patients with a sensory nerve defect of ≤30 mm, at the level of the wrist or a more distal location, with the first-line surgical methods selected according to a patient's preference. We compared sensory recovery using static two-point discrimination and adverse events between the artificial collagen nerve conduit and autologous nerve grafting.
Results: The artificial nerve conduit group included 49 patients, with a mean age of 42 years and nerve defect of 12.6 mm. The autologous nerve graft group included 7 patients, with historical data of an additional 31 patients, with a mean age of 36 years and nerve defect of 18.7 mm. The rate of recovery of sensory function at 12 months was 75% (36/49) for the artificial nerve conduit group and 73.7% (28/38) in the autologous nerve group. No serious adverse events directly associated with use of the artificial nerve conduit were identified.
Conclusions: The treatment of nerve defects ≤30 mm using artificial collagen nerve conduits was not inferior to treatment using autologous nerve grafts. Based on our data, the new artificial collagen nerve conduit can provide an alternative to autologous nerve for the treatment of peripheral nerve defects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.injury.2018.03.011 | DOI Listing |
Mater Today Bio
February 2025
Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland.
Peripheral nerve repair (PNR) is a major healthcare challenge due to the limited regenerative capacity of the nervous system, often leading to severe functional impairments. While nerve autografts are the gold standard, their implications are constrained by issues such as donor site morbidity and limited availability, necessitating innovative alternatives like nerve guidance conduits (NGCs). However, the inherently slow nerve growth rate (∼1 mm/day) and prolonged neuroinflammation, delay recovery even with the use of passive (no-conductive) NGCs, resulting in muscle atrophy and loss of locomotor function.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China.
Recent advancements in tissue engineering have promoted the development of nerve guidance conduits (NGCs) that significantly enhance peripheral nerve injury treatment, improving outcomes and recovery rates. However, utilising tailored biomimetic three-dimensional (3D) topological porous structures combined with multiple bio-effect neurotrophic factors to create environments similar to neural tissues, regulate local immune responses, and develop a supportive microenvironment to promote peripheral nerve regeneration and repair poses significant challenges. Herein, a biomimetic extracellular matrix (ECM) NGC featuring an interconnected 3D porous network and sustained delivery of insulin-like growth factor-1 (IGF-1) is designed using multi-functional gelatine microcapsules (GMs).
View Article and Find Full Text PDFRegen Biomater
November 2024
State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
Nerve injuries can be tantamount to severe impairment, standard treatment such as the use of autograft or surgery comes with complications and confers a shortened relief. The mechanism relevant to the regeneration of the optic nerve seems yet to be fully uncovered. The prevailing rate of vision loss as a result of direct or indirect insult on the optic nerve is alarming.
View Article and Find Full Text PDFPLoS One
January 2025
The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America.
Peripheral nerve injury (PNI) is characterized by a loss of cellular and axonal integrity, often leading to limited functional recovery and pain. Many PNIs are not amenable to repair with traditional techniques; however, cell therapies, particularly Schwann cells (SCs), offer the promise of neural tissue replacement and functional improvement. Exosomes, which carry cellular signaling molecules, can be secreted by SCs and have shown promise in PNI.
View Article and Find Full Text PDFJ Hand Surg Asian Pac Vol
January 2025
Department of Orthopaedic Surgery, Osaka City Juso Hospital, Osaka, Japan.
A 42-year-old man suffered an avulsion amputation of his right middle finger. He had undergone several surgeries since the age of 24, including amputation plasty and implantation of the injured nerve into fat and bone, but had difficulty returning to work due to persistent severe pain. He underwent nerve capping with an artificial nerve conduit at a university hospital, and his symptoms improved slightly, but immediately flared up again.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!