Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Paraquat (PQ) poisoning can cause multiple organ failure, in which the lung is the primary target organ. There is currently no treatment for PQ poisoning. Mesenchymal stem cells (MSCs), which differentiate into multiple cell types, have generated much enthusiasm regarding their use for the treatment of several diseases. The aim of this study was to systematically review and analyze published preclinical studies describing MSC administration for the treatment of PQ poisoning in animal models to provide a basis for cell therapy.
Methods: The electronic databases PubMed and CBMdisc were searched in this systematic review and meta-analysis. The MSC treatment characteristics of animal models of PQ poisoning were summarized. After quality assessment was performed, the effects of MSC transplantation were evaluated based on the survival rate, lung wet/dry weight, fibrosis scores, oxidative stress response, and inflammatory response. Publication bias was assessed.
Results: Eleven controlled preclinical studies involving MSC transplantation in animal models of PQ poisoning were included in this review. MSC therapy improved the survival rate and reduced the lung wet/dry weight and histopathological fibrosis changes in most studies. MSCs decreased serum or plasma malondialdehyde levels in the acute phase after 7 and 14 d and increased serum or plasma superoxide dismutase and glutathione levels at the same time points. IL-1β, TNF-α and TGF-β1 levels in blood or lung tissues were decreased to different degrees by MSCs. Lung hydroxyproline was decreased by MSCs after 14 d. No obvious evidence of publication bias was found.
Conclusion: MSCs showed anti-fibrosis therapeutic effects in animal models of lung injury caused by PQ poisoning, which may be related to reduced oxidative stress and inflammatory cytokine levels. Our review indicates a potential therapeutic role for MSC therapy to treat PQ poisoning and serves to augment the rationale for clinical studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5864035 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194748 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!