Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Gene and cellular therapies hold tremendous promise as agents for treating genetic disorders. However, the effective delivery of genes, particularly large ones, and expression at therapeutic levels can be challenging in cells of clinical relevance. To address this engineering hurdle, we sought to employ the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system to insert powerful regulatory elements upstream of an endogenous gene. We achieved robust activation of the gene in primary human umbilical cord blood CD34⁺ hematopoietic stem cells and peripheral blood T-cells. CD34⁺ cells retained their colony forming potential and, in a second engineering step, we disrupted the T-cell receptor complex in T-cells. These cellular populations are of high translational impact due to their engraftment potential, broad circulatory properties, and favorable immune profile that supports delivery to multiple recipients. This study demonstrates the feasibility of targeted knock in of a ubiquitous chromatin opening element, promoter, and marker gene that doubles as a suicide gene for precision gene activation. This system merges the specificity of gene editing with the high level, sustained gene expression achieved with gene therapy vectors. We predict that this design concept will be highly transferrable to most genes in multiple model systems representing a facile cellular engineering platform for promoting gene expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5979553 | PMC |
http://dx.doi.org/10.3390/ijms19040946 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!