Isothermal Crystallization Kinetics of Palm Oil as Influenced by Addition of a Commercial Phytosterol Ester Mixture.

J Agric Food Chem

Research Unit Food and Lipids , KU Leuven Kulak , Etienne Sabbelaan 53 Box 7659, 8500 Kortrijk , Belgium.

Published: April 2018

In literature there is good agreement on the health-promoting effects of phytosterols. However, addition of phytosterol esters (PEs) to lipid (containing food products) may influence its crystallization behavior. This study investigated the crystallization kinetics of palm oil (PO) after addition of PEs in high concentrations (≥10%). The isothermal crystallization of the PE-PO blends was analyzed at a temperature of 20 °C and at a supercooling of 18.7 °C using differential scanning calorimetry and time-resolved synchrotron X-ray diffraction. At increasing PE concentrations, PO crystallization at an isothermal temperature of 20 °C started later and was slower and a smaller amount of crystals were formed. Furthermore, a delay in polymorphic transition from α to β' was observed. When the blends were isothermally crystallized at a supercooling of 18.7 °C, only two of these effects remained: the delay in polymorphic transition and the decrease in crystalline content.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.7b05049DOI Listing

Publication Analysis

Top Keywords

isothermal crystallization
8
crystallization kinetics
8
kinetics palm
8
palm oil
8
temperature °c
8
supercooling 187
8
187 °c
8
delay polymorphic
8
polymorphic transition
8
oil influenced
4

Similar Publications

Effects of molecular weight of chitosan on its binding ability with OSA starch and oil-water interface behavior of complex-stabilized emulsion.

Int J Biol Macromol

December 2024

School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Vic 3010, Australia. Electronic address:

This work examined the effects of molecular weight (2-15 kDa) and concentration (10-30 mg/mL) of chitosan (CTS) on the binding capacity and interface behavior between octenyl succinic acid sodium starch (OSS) and CTS, as well as their effects on the storage stability of emulsions. The results of the isothermal calorimetry titration demonstrated that OSS and CTS were complexed by electrostatic interaction and spontaneous hydrogen bonding driven by enthalpy (ΔH from -3931 to -7983 cal/mol, ΔS from -38.5 to -49.

View Article and Find Full Text PDF

Environmentally friendly nanoporous gels are tailor-designed and employed in the adsorption of toxic organic pollutants in wastewater. To ensure the maximum adsorption of the contaminant molecules by the gels, molecular modeling techniques were used to evaluate the binding affinity between the toxic organic contaminants such as methylene blue (MB) and Congo red (CR) and various biopolymers. To generate nanopores in the matrix of the polymeric gels, salt crystals were used as porogen.

View Article and Find Full Text PDF

Helical aromatic oligoamide foldamers bearing anionic side chains that mimic the overall shape and charge surface distribution of DNA were synthesized. Their interactions with chromosomal protein Sac7d, a non-sequence-selective DNA-binder that kinks DNA, were investigated by Surface Plasmon Resonance (SPR), Isothermal Titration Calorimetry (ITC), Circular Dichroism spectroscopy (CD), melting curve analysis, Atomic Force Microscopy (AFM), and Nuclear Magnetic Resonance (NMR), as well as by single crystal X-ray crystallography. The foldamers were shown to bind to Sac7d better than a DNA duplex of comparable length.

View Article and Find Full Text PDF

Molecular Additives as Competitive Binding Agents to Control Supramolecular-Driven Nanoparticle Assembly.

ACS Nanosci Au

December 2024

Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.

Colloidal nanoparticle assembly methods can produce intricate superlattice structures and often use knowledge of atomic crystallization behaviors to guide their design. While this analogy has enabled multiple routes to programming colloidal crystallization thermodynamics, fewer tools or strategies exist to manipulate nanoparticle superlattice growth kinetics in a controlled manner. Here we investigate how small-molecule additives can be used to modulate the thermodynamics and kinetics of supramolecular-chemistry-driven nanoparticle assembly.

View Article and Find Full Text PDF

Malachite green is a hazardous chemical that poses serious threats to aquatic ecosystems due to its toxicity and persistence in the environment. Additionally, it is harmful to human health, recognized as a carcinogenic and mutagenic agent that can cause long-term adverse effects. Hence, in this study, malachite green dye was efficiently removed from aqueous media using CoO/MgO/MgBO novel nanocomposites, known as CBM600 and CBM800.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!