Astaxanthin (Asta), a xanthophyll carotenoid, has been reported to be a strong antioxidative agent and has anti-inflammatory, antitumor and free radical-scavenging activities. However, inadequate stability and water solubility results in its low bioavailability. This study incorporated Asta into hydrophilic hyaluronan nanoparticles (HAn) to produce Asta-HAn aggregates (AHAna) using an electrostatic field system and investigated the restorative effects of AHAna on retrorsine-CCl₄-induced liver fibrosis in rats in vivo. Transmission electron microscopy (TEM) revealed that the prepared HAn were approximately 15 ± 2.1 nm in diameter and after the incorporation of Asta into HAn, the size increased to 210-500 nm. The incorporation efficiency of Asta was approximately 93% and approximately 54% of Asta was released after incubation for 18 h. Significant reductions in alanine aminotransferase and aspartate aminotransferase levels were observed after the rats were intraperitoneally injected with AHAna. Histopathological findings revealed the greatest reduction in hepatic fibrosis and hepatocyte necrosis in the rats after 2 weeks of intraperitoneal injection with AHAna, which is consistent with the data acquired from serum biochemical analysis. The restorative effects on liver damage displayed by AHAna in vivo demonstrated that Asta aggregated through HAn incorporation exerts therapeutic effects on liver fibrosis and necrosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017246PMC
http://dx.doi.org/10.3390/molecules23040726DOI Listing

Publication Analysis

Top Keywords

liver fibrosis
12
retrorsine-ccl₄-induced liver
8
fibrosis necrosis
8
restorative effects
8
effects liver
8
asta
6
ahana
5
reparative effects
4
effects astaxanthin-hyaluronan
4
astaxanthin-hyaluronan nanoaggregates
4

Similar Publications

Predictive value of neutrophil-to-lymphocyte ratio and MELD score for short-term survival of patients with HBV-DeCi.

Biomark Med

January 2025

Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

Objective: The prognostic value of neutrophil-to-lymphocyte ratio (NLR) combined with Model for End-Stage Liver Disease (MELD) score was evaluated for hepatitis B virus-associated decompensated cirrhosis (HBV-DeCi).

Methods: The 30-day mortality of 166 hBV-DeCi patients was examined. Receiver operating characteristic curve analysis and multivariate regression analysis were used to assess the performance of NLR for prediction of poor outcomes.

View Article and Find Full Text PDF

Although therapies based on direct-acting antivirals (DAAs) effectively eradicate hepatitis C virus (HCV) in patients, there is still a high risk of liver fibrosis even after a sustained virological response. Therefore, it is of great clinical importance to understand the mechanism of potential factors that promote liver fibrosis after virological cure by treatment with DAAs. Here, we found that tubulointerstitial nephritis antigen-like 1 (TINAGL1) is significantly increased in HCV-infected hepatocytes and in the liver of patients with liver fibrosis, and that higher TINAGL1 expression persists in HCV-eradicated hepatocytes after treatment with DAAs.

View Article and Find Full Text PDF

Caveolin-1 mitigates the advancement of metabolic dysfunction-associated steatotic liver disease by reducing endoplasmic reticulum stress and pyroptosis through the restoration of cholesterol homeostasis.

Int J Biol Sci

January 2025

Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disease worldwide, which has the potential to advance to fibrosis. CAV1 has the effects of improving liver lipid deposition in MASLD, however, the potential mechanism is largely unknown. Here, we establish a MASLD mouse model in CAV1 knockout (KO) mice and perform transcriptome analysis on livers from mice to investigate the effects of CAV1 in MASLD progression.

View Article and Find Full Text PDF

USP25 stabilizes STAT6 to promote IL-4-induced macrophage M2 polarization and fibrosis.

Int J Biol Sci

January 2025

Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.

As a leading cause of morbidity and mortality, fibrosis is the common pathway of various chronic inflammatory diseases in organs and causes death in a large number of patients. It can destroy the structure and function of organs and ultimately lead to organ failure, which is a major cause of disability and death in many diseases. However, the regulatory mechanism of organ fibrosis is not well clear and the lack of effective drugs and treatments, which seriously endangers human health and safety.

View Article and Find Full Text PDF

Metabolic-dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease in the Western world. MASLD-associated cirrhosis prevalence is on the rise along with the obesity and metabolic syndrome epidemic. Genetic factors are included in the multi-hit model of MASLD pathogenesis and insulin-like growth factor-1 (IGF-1) has an important role.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!