Coaxial nanowires as plasmon-mediated remote nanosensors.

Nanoscale

Institut des Matériaux Jean Rouxel (IMN), UMR 6502 CNRS and Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France.

Published: April 2018

This study reports on the plasmon-mediated remote Raman sensing promoted by specially designed coaxial nanowires. This unusual geometry for Raman study is based on the separation, by several micrometres, of the excitation laser spot, on one tip of the nanowire, and the Raman detection at the other tip. The very weak efficiency of Raman emission makes it challenging in a remote configuration. For the proof-of-concept, we designed coaxial nanowires consisting of a gold core to propagate surface plasmon polaritons and a Raman-emitting shell of poly(3,4-ethylene-dioxythiophene). The success of the fabrication was demonstrated by correlating, for the same single nanowire, a morphological analysis by electron microscopy and Raman spectroscopy analysis. Importantly for probing the remote-Raman effect, the original hard template-based process allows one to control the location of the polymer shell all along the nanowire, or only close to one or the two nanowire tips. Such all-in-one single nanowires could have applications in the remote detection of photo-degradable substances and for exploring 1D nanosources for integrated photonic and plasmonic systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/C8NR00125ADOI Listing

Publication Analysis

Top Keywords

coaxial nanowires
12
plasmon-mediated remote
8
designed coaxial
8
raman
5
nanowires plasmon-mediated
4
remote
4
remote nanosensors
4
nanosensors study
4
study reports
4
reports plasmon-mediated
4

Similar Publications

Radar-Terahertz-Infrared Compatible Stealth Coaxial Silver Nanowire@Carbon Nano-Cable Aerogel.

Angew Chem Int Ed Engl

January 2025

Center for Bioinspired Science and Technology, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115.

Achieving multi-spectrum compatible stealth in radar-terahertz-infrared bands with robust performance has great prospects for both military and civilian applications. However, the progress of materials encounters substantial challenges due to the significant variability in frequency coupling properties across different electromagnetic wave bands. Here, this work presents the design of a multi-scale structure and fabricates a lightweight aerogel (silver nanowire@carbon, AgNW@C) consisting of a regular coaxial nano-cable, with silver nanowire as the core and amorphous-graphitized hybrid carbon as the outer-layer.

View Article and Find Full Text PDF

Plateau-Rayleigh Instability in Soft-Lattice Inorganic Solids.

J Am Chem Soc

December 2024

New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.

Plateau-Rayleigh instability─a macroscopic phenomenon describing the volume-constant breakup of one-dimensional continuous fluids─has now been widely observed in adatoms, liquids, polymers, and liquid metals. This instability enables controlled wetting-dewetting behavior at fluid-solid interfaces and, thereby, the self-limited patterning into ordered structures. However, it has yet to be observed in conventional inorganic solids, as the rigid lattices restrict their "fluidity".

View Article and Find Full Text PDF

Core-Sheath Heterogenous Interlocked Stretchable Conductive Fiber Induced by Adhesive MXene Modulated Interfacial Soldering.

Nano Lett

November 2024

Shandong Key Laboratory of Medical and Health Textile Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao 266071, P. R. China.

Article Synopsis
  • The development of an ultrastretchable conductor with a core-sheath heterogeneous interlocked structure addresses the challenge of achieving both high electrical conductivity and mechanical stretchability for flexible electronics.
  • This conductor is created using interfacial soldering of silver nanowires (AgNWs) and adhesive polydopamine-functionalized MXene (PDM), resulting in a superelastic interconnected network.
  • The final product demonstrates impressive electrical conductivity and durability, maintaining stability even when subjected to significant mechanical deformations, making it promising for use in soft electronics.
View Article and Find Full Text PDF

Metal oxide core-shell fibrous nanostructures are promising gas-sensitive materials for the detection of a wide variety of both reducing and oxidizing gases. In these structures, two dissimilar materials with different work functions are brought into contact to form a coaxial heterojunction. The influence of the shell material on the transportation of the electric charge carriers along these structures is still not very well understood.

View Article and Find Full Text PDF

Superionic conductor-based solid-state electrolytes with preferred crystal structures hold great promise for realizing ultrafast lithium-ion (Li) transfer, which is urgently desired for all-solid-state lithium batteries. However, the precise control of crystal growth of superionic conductors is still challenging since the crystals always spontaneously grow to disordered structures with the lowest internal energy to ensure thermodynamic stability. Herein, a coaxial nanowire with a polyvinylpyrrolidone (PVP) sheath and a LiLaTiO (LLTO) precursor core (PVP/LLTO-caNW) is prepared through coaxial electrospinning, followed by sintering into LLTO nanowire with an oriented crystal structure (LLTO-caNW).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!