A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of CBM1 and linker region on enzymatic properties of a novel thermostable dimeric GH10 xylanase (Xyn10A) from filamentous fungus Aspergillus fumigatus Z5. | LitMetric

Effect of CBM1 and linker region on enzymatic properties of a novel thermostable dimeric GH10 xylanase (Xyn10A) from filamentous fungus Aspergillus fumigatus Z5.

AMB Express

Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.

Published: March 2018

Xylanase with a high thermostability will satisfy the needs of raising the temperature of hydrolysis to improve the rheology of the broth in industry of biomass conversion. In this study, a xylanase gene (xyn10A), predicted to encode a hydrolase domain of GH10, a linker region and a CBM1 domain, was cloned from a superior lignocellulose degrading strain Aspergillus fumigatus Z5 and successfully expressed in Pichia pastoris X33. Xyn10A has a specific xylanase activity of 34.4 U mg, and is optimally active at 90 °C and pH 6.0. Xyn10A shows quite stable at pHs ranging from 3.0 to 11.0, and keeps over 40% of xylanase activity after incubation at 70 °C for 1 h. Removal of CBM1 domain has a slight negative effect on its thermostability, but the further cleavage of linker region significantly decreased its stability at high temperature. The transfer of CBM1 and linker region to another GH10 xylanase can help to increase the thermostability. In addition, hydrolase domains between the two Xyn10A proteins naturally formed a dimer structure, which became more thermostable after removing the CBM1 or/and linker region. This thermostable Xyn10A is a suitable candidate for the highly efficient fungal enzyme cocktails for biomass conversion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862715PMC
http://dx.doi.org/10.1186/s13568-018-0576-5DOI Listing

Publication Analysis

Top Keywords

linker region
20
cbm1 linker
8
gh10 xylanase
8
aspergillus fumigatus
8
biomass conversion
8
cbm1 domain
8
xylanase activity
8
xylanase
6
xyn10a
6
cbm1
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!