The effect of processing on the biochemical contents of leaves was investigated. The moisture, crude protein, lipid, fiber, ash, and total carbohydrate contents of the raw vegetable were 59.15, 1.85, 2.32, 3.76, 2.04, and 34.65 g/100 g, respectively. The saponin, alkaloid, tannin, flavonoid, phenol, and anthocyanin contents of the raw vegetable were 5.35, 4.04, 1.10, 3.53, 2.87, and 1.27 g/100 g, respectively, while it contained 2.65 mg/100 g calcium, 1.14 mg/100 g magnesium, 7.66 mg/100 g potassium, 350.75 μg/g vitamin A, 50.87 mg/100 g vitamin C, and 0.25% titratable acidity. There were significant reductions ( < .05) in the protein, lipid, fiber, ash, saponin, alkaloid, tannin, phenol, anthocyanin, calcium, magnesium, potassium, vitamin A, vitamin C, and titratable acidity of the boiled or boiled + sun-dried leaves; significant elevation of the moisture contents but significant reduction of the total carbohydrate contents of the boiled; and significant reduction of the moisture contents of the boiled + sun-dried vegetable compared with the raw. There were significant increases ( < .05) in the total carbohydrate contents of the boiled + sun-dried leaves; significant reductions ( < .05) in the moisture, saponin, alkaloid, and vitamins A and C contents of the sun-dried vegetable; and no significant differences ( > .05) in the lipid, calcium, potassium, and ash, but significant increases ( < .05) in the protein, crude fiber, total carbohydrates, tannins, flavonoids, phenols, anthocyanin, magnesium, and titratable acidity of the sun-dried vegetable when compared with the raw. Sun drying alone either retained or enhanced the release of some important bioactive compounds in leaves. Furthermore, the reduced moisture content of the sun-dried vegetable together with its increased titratable acidity will make the sun-dried vegetable uninhabitable for microorganisms, thereby increasing its shelf life.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5849901 | PMC |
http://dx.doi.org/10.1002/fsn3.567 | DOI Listing |
Int J Surg
January 2025
Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
The immune response is modulated by a diverse array of signals within the tissue microenvironment, encompassing biochemical factors, mechanical forces, and pressures from adjacent tissues. Furthermore, the extracellular matrix and its constituents significantly influence the function of immune cells. In the case of carcinogenesis, changes in the biophysical properties of tissues can impact the mechanical signals received by immune cells, and these signals can be translated into biochemical signals through mechano-transduction pathways.
View Article and Find Full Text PDFFront Nutr
December 2024
State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China.
Background: Tratt pomace (RRTP) contains valuable components like polyphenols and polysaccharides, which have high utilization value. Fermentation is an effective technique for creating beneficial nutrients that can improve the taste, appearance, and nutritional benefits of foods. Nevertheless, there is a lack of research on the alterations in chemical composition of RRTP during fermentation.
View Article and Find Full Text PDFUnlabelled: β-arrestins (βarrs) are key regulators of G protein-coupled receptors (GPCRs), essential for modulating signaling pathways and physiological processes. While current pharmacological strategies target GPCR orthosteric and allosteric sites, as well as G protein transducers, comparable tools for studying βarrs are lacking. Here, we present the discovery and characterization of novel small-molecule allosteric inhibitors of βarrs through comprehensive biophysical, biochemical, pharmacological, and structural analyses.
View Article and Find Full Text PDFTemperature profoundly impacts organismal physiology and ecological dynamics, particularly affecting ectothermic species and making them especially vulnerable to climate changes. Although complex physiological processes usually involve dozens of enzymes, empirically it is found that the rates of these processes often obey the Arrhenius equation, which was originally derived for single-enzyme-catalyzed reactions. Here we have examined the temperature scaling of the early embryonic cell cycle, with the goal of understanding why the Arrhenius equation approximately holds and why it breaks down at temperature extremes.
View Article and Find Full Text PDFACS Sens
January 2025
College of Chemistry, Beijing Normal University, Beijing 100875, China.
Iontronic sensors based on confined space have garnered significant attention due to their promising applications, ranging from single-cell analysis to studies. However, their limited sensitivity has constrained their effectiveness in studying molecular information during physiological and pathological processes. Here, we demonstrate an electrolyte-gated ionic transistor (EGIT) by integrating the confined ion transport behavior in a double-barreled micropipet with an electrolyte-gated transistor configuration, achieving highly sensitive and selective sensing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!