Conformational preferences of α-fluoroketones may influence their reactivity.

Beilstein J Org Chem

Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.

Published: December 2017

Fluorine has been shown in many cases to impart specific and predictable effects on molecular conformation. Here it is shown that these conformational effects may have an influence on reactivity through studying the relative reactivity of various α-halogenated ketones towards borohydride reduction. These results demonstrate that the α-fluoro ketones are in fact a little less reactive than the corresponding α-chloro and α-bromo derivatives. It is suggested, supported by computation, that this effect is due to reactive conformations in which the C-X bond is orthogonal to the carbonyl group for good orbital overlap being disfavoured in the case of fluoro ketones.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5753061PMC
http://dx.doi.org/10.3762/bjoc.13.284DOI Listing

Publication Analysis

Top Keywords

influence reactivity
8
conformational preferences
4
preferences α-fluoroketones
4
α-fluoroketones influence
4
reactivity fluorine
4
fluorine cases
4
cases impart
4
impart specific
4
specific predictable
4
predictable effects
4

Similar Publications

Traditional tactile brain-computer interfaces (BCIs), particularly those based on steady-state somatosensory-evoked potentials, face challenges such as lower accuracy, reduced bit rates, and the need for spatially distant stimulation points. In contrast, using transient electrical stimuli offers a promising alternative for generating tactile BCI control signals: somatosensory event-related potentials (sERPs). This study aimed to optimize the performance of a novel electrotactile BCI by employing advanced feature extraction and machine learning techniques on sERP signals for the classification of users' selective tactile attention.

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) have shown promise as a delivery system for nucleic acid-based therapeutics, including DNA, siRNA, and mRNA vaccines. The immune system plays a critical role in the response to these nanocarriers, with innate immune cells initiating an early response and adaptive immune cells mediating a more specific reaction, sometimes leading to potential adverse effects. Recent studies have shown that the innate immune response to LNPs is mediated by Toll-like receptors (TLRs) and other pattern recognition receptors (PRRs), which recognize the lipid components of the nanoparticles.

View Article and Find Full Text PDF

In this research study, we investigated four strains of that showed promising properties for plant growth. These strains were tested for their ability to mobilize phosphorus and produce ammonium, siderophores, and phytohormones. The strains exhibited different values of PGP traits; however, the analysis of the complete genomes failed to reveal any significant differences in known genes associated with the expression of beneficial plant traits.

View Article and Find Full Text PDF

Amines are widespread environmental pollutants that may pose health risks. Specifically, the N-dealkylation of amines mediated by cytochrome P450 enzymes (P450) could influence their metabolic transformation safety. However, conventional experimental and computational chemistry methods make it difficult to conduct high-throughput screening of N-dealkylation of emerging amine contaminants.

View Article and Find Full Text PDF

Sewage sludge is recognized as both a source and a reservoir for antibiotic resistance genes (ARGs). Within an anaerobic digestion (AD) system, the presence of microplastics (MPs) has been observed to potentially facilitate the proliferation of these ARGs. Understanding the influence of MPs on microbial behavior and horizontal gene transfer (HGT) within the AD system is crucial for effectively managing the dissemination of ARGs in the environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!