Non-arteritic anterior ischaemic optic neuropathy (NAION) and optic neuritis (ON) may be difficult to distinguish early in their disease courses. Our goal was to determine if specific magnetic resonance imaging characteristics differentiate acute NAION from ON. Neuroradiologists, masked to diagnosis, reviewed the diffusion-weighted imaging (DWI) and post-contrast enhancement (PCE) characteristics of the optic nerve in 140 eyes. PCE and DWI signals of the optic disc alone did not discriminate between NAION and ON. After taking age and sex into consideration, only DWI and PCE of the intraorbital segment of the optic nerve differentiated the two, with ON having the increased likelihood of these findings. Isolated PCE without DWI signal at the optic disc, however, was 100% specific for NAION. This may be the most specific way to radiographically differentiate between NAION and ON in the acute setting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5858860 | PMC |
http://dx.doi.org/10.1080/01658107.2017.1356856 | DOI Listing |
Sleep
January 2025
UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.
Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted Memory Reactivation (TMR), involving cueing learned material during post-training sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and post-training sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during post-training sleep affects performance gains and delayed microstructural remodeling, using both standard Diffusion Tensor Imaging (DTI) and advanced Neurite Orientation Dispersion & Density Imaging (NODDI).
View Article and Find Full Text PDFArch Gynecol Obstet
January 2025
Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
Purpose: This case report aims to present a rare case of endometrial carcinosarcoma, a highly malignant tumor with a poor prognosis. The primary objective is to describe this unique case's clinical presentation, multimodal magnetic resonance imaging (MRI) features, typical histopathological characteristics and surgical treatment.
Methods: A detailed analysis of the patient's medical history, preoperative imaging evaluation, and treatment approach was conducted.
J Clin Med
January 2025
Radiology, Multizonal Unit of Rovereto and Arco, APSS Provincia Autonoma Di Trento, 38123 Trento, Italy.
The assessment of lymph node (LN) involvement with clinical imaging is a key factor in cancer staging. Node Reporting and Data System 1.0 (Node-RADS) was introduced in 2021 as a new system specifically tailored for classifying and reporting LNs on computed tomography (CT) and magnetic resonance imaging scans.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Department of Radiology, Jeonbuk National University Medical School and Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Jeonbuk, Republic of Korea.
Low-grade endometrial stromal sarcoma (LGESS) is a rare uterine malignancy that causes non-specific symptoms which presents more typically in younger women compared to other uterine sarcomas. Preoperative diagnosis of myometrial LGESS is challenging, as it is frequently mistaken for a benign uterine mass, such as a degenerating leiomyoma. Despite its rarity, the imaging findings of LGESS are highly variable, complicating the diagnostic process.
View Article and Find Full Text PDFAcad Radiol
January 2025
Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, PR China (L.K., B.W., Q.C., L.M., W.C., Y.C., Y.G., H.W.). Electronic address:
Rationale And Objectives: To investigate the feasibility of amide proton transfer-weighted (APTw) and diffusion-weighted MRI in evaluating the response of bladder cancer (BCa) to neoadjuvant immunochemotherapy.
Materials And Methods: From June 2021 to July 2023, participants with pathologically confirmed BCa were prospectively recruited to undergo MRI examinations, including APTw and diffusion-weighted MRI before and after neoadjuvant immunochemotherapy. Histogram analysis features (mean, median, and entropy) were extracted from pre- and post-treatment APTw and apparent diffusion coefficient (ADC) maps, respectively.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!