Oxygenase-catalysed post-translational modifications of basic protein residues, including lysyl hydroxylations and N-methyl lysyl demethylations, have important cellular roles. Jumonji-C (JmjC) domain-containing protein 5 (JMJD5), which genetic studies reveal is essential in animal development, is reported as a histone N-methyl lysine demethylase (KDM). Here we report how extensive screening with peptides based on JMJD5 interacting proteins led to the finding that JMJD5 catalyses stereoselective C-3 hydroxylation of arginine residues in sequences from human regulator of chromosome condensation domain-containing protein 1 (RCCD1) and ribosomal protein S6 (RPS6). High-resolution crystallographic analyses reveal overall fold, active site and substrate binding/product release features supporting the assignment of JMJD5 as an arginine hydroxylase rather than a KDM. The results will be useful in the development of selective oxygenase inhibitors for the treatment of cancer and genetic diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862942PMC
http://dx.doi.org/10.1038/s41467-018-03410-wDOI Listing

Publication Analysis

Top Keywords

domain-containing protein
8
jmjd5
5
jmjd5 human
4
human arginyl
4
arginyl c-3
4
c-3 hydroxylase
4
hydroxylase oxygenase-catalysed
4
oxygenase-catalysed post-translational
4
post-translational modifications
4
modifications basic
4

Similar Publications

Elevated blood levels of estrogens are associated with poor prognosis in estrogen receptor-positive (ER+) breast cancers, but the relationship between circulating blood hormone levels and intracellular hormone concentrations are not well characterized. We observed that MCF-7 cells treated acutely with 17β-estradiol (E2) retain a substantial amount of the hormone even upon removal of the hormone from the culture medium. Moreover, global patterns of E2-dependent gene expression are sustained for hours after acute E2 treatment and hormone removal.

View Article and Find Full Text PDF

Orthoflaviviruses are positive-sense single-stranded RNA viruses that hijack host proteins to promote their own replication. Zika virus (ZIKV) is infamous among orthoflaviviruses for its association with severe congenital birth defects, notably microcephaly. We previously mapped ZIKV-host protein interactions and identified the interaction between ZIKV non-structural protein 4A (NS4A) and host microcephaly protein ankyrin repeat and LEM domain-containing 2 (ANKLE2).

View Article and Find Full Text PDF

Background: It is well established that the interaction between osteogenesis and inflammation can impact bone tissue regeneration. The use of nanoparticles to treat and alleviate inflammation at the molecular level has the potential to improve the osteogenic microenvironment and serve as a therapeutic approach.

Methods: We have synthesized new hollow cerium oxide nanoparticles and doped with cathepsin B inhibitor (CA-074Me) to create novel CeO@CA-074Me NPs.

View Article and Find Full Text PDF

Background: The identification of new biomarkers that improve existing cardiovascular risk prediction models for acute coronary syndrome is essential for accurately identifying high-risk patients and refining treatment strategies. Autophagy, a vital cellular degradation mechanism, is important for maintaining cardiac health. Dysregulation of autophagy has been described in cardiovascular conditions such as myocardial ischemia-reperfusion injury, a key factor in myocardial infarction (MI).

View Article and Find Full Text PDF

Functional conservation and divergence of arabidopsis VENOSA4 and human SAMHD1 in DNA repair.

Heliyon

January 2025

Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain.

The human deoxyribonucleoside triphosphatase (dNTPase) Sterile alpha motif and histidine-aspartate domain containing protein 1 (SAMHD1) has a dNTPase-independent role in repairing DNA double-strand breaks (DSBs) by homologous recombination (HR). Here, we show that VENOSA4 (VEN4), the probable ortholog of SAMHD1, also functions in DSB repair by HR. The loss-of-function mutants showed increased DNA ploidy and deregulated DNA repair genes, suggesting DNA damage accumulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!